865 resultados para Inductive power transmission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical Inductive Power Transfer (IPT) systems employ two power conversion stages to generate a high frequency current from low frequency utility supply. This paper proposes a matrix converter based IPT system that facilitates the generation of high frequency current through a single power conversion stage. The proposed matrix converter topology transforms a 3-phase low frequency voltage system to a high frequency single phase voltage which in turn powers a series compensated IPT system. A comprehensive mathematical model is developed to investigate the behavior of the proposed IPT topology. Theoretical results are presented in comparison to simulations, which are performed in Matlab/ Simulink, to demonstrate the applicability of the proposed concept and the validity of the developed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic coupling phenomena between overhead power transmission lines and other nearby structures are inevitable, especially in densely populated areas. The undesired effects resulting from this proximity are manifold and range from the establishment of hazardous potentials to the outbreak of alternate current corrosion phenomena. The study of this class of problems is necessary for ensuring security in the vicinities of the interaction zone and also to preserve the integrity of the equipment and of the devices there present. However, the complete modeling of this type of application requires the three- -dimensional representation of the region of interest and needs specific numerical methods for field computation. In this work, the modeling of problems arising from the flow of electrical currents in the ground (the so-called conductive coupling) will be addressed with the finite element method. Those resulting from the time variation of the electromagnetic fields (the so-called inductive coupling) will be considered as well, and they will be treated with the generalized PEEC (Partial Element Equivalent Circuit) method. More specifically, a special boundary condition on the electric potential is proposed for truncating the computational domain in the finite element analysis of conductive coupling problems, and a complete PEEC formulation for modeling inductive coupling problems is presented. Test configurations of increasing complexities are considered for validating the foregoing approaches. These works aim to provide a contribution to the modeling of this class of problems, which tend to become common with the expansion of power grids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A typical low power IPT system employs an H-Bridge converter with a simple control strategy to generate a high frequency current from DC power supply. This paper proposes a cascaded multilevel converter for bidirectional IPT (BIPT) systems, which is suitable for low to medium power applications as well as for situations such as PV cells where several individual DC sources are to be utilized. A novel modulation strategy is proposed for the multilevel converter with the aim of minimizing switching losses. Series - Series (SS) compensation circuit is adopted for the IPT system and a mathematical model is presented to minimize the coil losses of the system under varying output power. Theoretical results presented in comparison to the simulations to demonstrate the applicability of the proposed concept and the validity of the developed model. The experimental results show the feasibility of the proposed phase shift modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a method for transmission loss charge allocation in deregulated power systems based on Relative Electrical Distance (RED) concept. Based on RED between the generator and load nodes and the predefined bilateral power contracts, charge evaluation is carried out. Generally through some power exchange mechanism a set of bilateral contracts are determined that facilitate bilateral agreements between the generation and distribution entities. In this paper the possible charges incurred in meeting loads like generation charge, transmission charge and charge due to losses are evaluated. Case studies have been carried out on a few practical equivalent systems. Due to space limitation results for a sample 5 bus system are presented considering ideal load/generation power contracts and deviated load/generation power contracts. Extensive numerical testing indicates that the proposed allocation scheme produces loss allocations that are appropriate and that behave in a physically reasonable manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new approach to enhance the transmission system distance relay co-ordination is presented. The approach depends on the apparent impedance loci seen by the distance relay during all possible disturbances. In a distance relay, the impedance loci seen at the relay location is obtained by extensive transient stability studies. Support vector machines (SVMs), a class of patterns classifiers are used in discriminating zone settings (zone-1, zone-2 and zone-3) using the signals to be used by the relay. Studies on a sample 9-bus are presented for illustrating the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a plate clutch in a two-inertia power transmission system is analysed assuming negligible compliance and using a piecewise linear function to represent the clutch torque characteristic. Expressions defining, for all linear segments of the clutch torque characteristic, dimensionless input and output velocities of the clutch and dimensionless slip period are presented. The use of these expressions in preparing design charts to aid analysis and design of the plate clutch is outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic concepts of tuned half-wave lines were covered by Hubert and Gent [1]. In this paper the problem of overvoltages during faults and the stability of the system incorporating such tuned lines are discussed. The type of tuning bank and the line arrangements that will be satisfactory from the point of view of stability are suggested. The behavior of a line tuned by distributed capacitor is analyzed, and its performance is compared with the other type of tuned line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides additional theoretical information on half-wave-length power transmission. The analysis is rendered more general by consideration of a natural half-wave line instead of a short line tuned to half-wave. The effects of line loading and its power factor on the voltage and current profiles of the line and ganerator excitation have been included. Some of the operating problems such as charging of the line and synchronization of the half-wave system are also discussed. The inevitability of power-frequency overvoltages during faults is established. Stability studies have indicated that the use of switching stations is not beneficial. Typical swing curves are also presented.