900 resultados para Induction Motors, Load Modelling, PMU, Small Signal, System Identification
Resumo:
Modelling the power systems load is a challenge since the load level and composition varies with time. An accurate load model is important because there is a substantial component of load dynamics in the frequency range relevant to system stability. The composition of loads need to be charaterised because the time constants of composite loads affect the damping contributions of the loads to power system oscillations, and their effects vary with the time of the day, depending on the mix of motors loads. This chapter has two main objectives: 1) describe the load modelling in small signal using on-line measurements; and 2) present a new approach to develop models that reflect the load response to large disturbances. Small signal load characterisation based on on-line measurements allows predicting the composition of load with improved accuracy compared with post-mortem or classical load models. Rather than a generic dynamic model for small signal modelling of the load, an explicit induction motor is used so the performance for larger disturbances can be more reliably inferred. The relation between power and frequency/voltage can be explicitly formulated and the contribution of induction motors extracted. One of the main features of this work is the induction motor component can be associated to nominal powers or equivalent motors
Resumo:
While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
The main contribution of this paper is decomposition/separation of the compositie induction motors load from measurement at a system bus. In power system transmission buses load is represented by static and dynamic loads. The induction motor is considered as the main dynamic loads and in the practice for major transmission buses there will be many and various induction motors contributing. Particularly at an industrial bus most of the load is dynamic types. Rather than traing to extract models of many machines this paper seeks to identify three groups of induction motors to represent the dynamic loads. Three groups of induction motors used to characterize the load. These are the small groups (4kw to 11kw), the medium groups (15kw to 180kw) and the large groups (above 630kw). At first these groups with different percentage contribution of each group is composite. After that from the composite models, each motor percentage contribution is decomposed by using the least square algorithms. In power system commercial and the residential buses static loads percentage is higher than the dynamic loads percentage. To apply this theory to other types of buses such as residential and commerical it is good practice to represent the total load as a combination of composite motor loads, constant impedence loads and constant power loads. To validate the theory, the 24hrs of Sydney West data is decomposed according to the three groups of motor models.
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
Resumo:
Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.
Resumo:
The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.
Small-signal stability analysis of a DFIG-based wind power system under different modes of operation
Resumo:
This paper focuses on the super/subsynchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG-based wind generation system is investigated. The coordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated
Resumo:
With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.
Resumo:
The small signal stability of interconnected power systems is one of the important aspects that need to be investigated since the oscillations caused by this kind of instability have caused many incidents. With the increasing penetration of wind power in the power system, particularly doubly fed induction generator (DFIG), the impact on the power system small signal stability performance should be fully investigated. Because the DFIG wind turbine integration is through a fast action converter and associated control, it does not inherently participate in the electromechanical small signal oscillation. However, it influences the small signal stability by impacting active power flow paths in the network and replacing synchronous generators that have power system stabilizer (PSS). In this paper, the IEEE 39 bus test system has been used in the analysis. Furthermore, four study cases and several operation scenarios have been conducted and analysed. The selective eigenvalue Arnoldi/lanczos's method is used to obtain the system eigenvalue in the range of frequency from 0.2 Hz to 2 Hz which is related to electromechanical oscillations. Results show that the integration of DFIG wind turbines in a system during several study cases and operation scenarios give different influence on small signal stability performance.
Resumo:
This paper presents the practical use of Prony Analysis to identify small signal oscillation mode parameters from simulated and actual phasor measurement unit (PMU) ringdown data. A well-known two-area four-machine power system was considered as a study case while the latest PMU ringdown data were collected from a double circuit 275 kV main interconnector on the Irish power system. The eigenvalue analysis and power spectral density were also conducted for the purpose of comparison. The capability of Prony Analysis to identify the mode parameters from three different types of simulated PMU ringdown data has been shown successfully. Furthermore, the results indicate that the Irish power system has dominant frequency modes at different frequencies. However, each mode has good system damping.