979 resultados para Indian population


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic malignancies like leukemia and lymphoma are characteristically associated with various chromosomal translocations. Follicular lymphoma (FL) and mantle cell lymphoma (MCL) are two subtypes of non-Hodgkin's lymphoma which possess t(14;18) and t(11;14) translocations, respectively. The incidence of FL and MCL is higher in the western countries as compared to India. Interestingly, the associated translocations are also found in healthy individuals in western population, which is 50-80% for t(14;18), whereas t(11;14) occurs at a very low frequency. However, there are no studies to explore thes translocations in healthy Indian population, which could explain the lower incidence of FL and MCL. We employed Southern hybridization following nested PCR to detect above translocations in healthy individuals from India. Our results suggest that this assay can detect one t(14;18) translocation event in up to 10(7) normal cells where as one t(11;14) in 10(8) normal cells. According to our results, 87 out of 253 individuals carry t(14;18) indicating 34% prevalence in the population. The presence of this translocation was also detectable at the transcript level. Although, no gender-based difference was observed, an age-dependent increase in the prevalence of translocation was found in adults. However, even after studying 210 people, we could not detect any t(11;14) translocation, indicating that it is uncommon in Indian population. These results suggest that lower incidence of FL and MCL in India could be attributed to lower prevalence of these translocations in healthy individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator activated receptor-gamma 2 (PPARG2) is a nuclear hormone receptor of ligand-dependent ranscription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. Materials and methods - Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. Results - All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. Conclusion - Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) is coded by a gene on the X-chromosome. Earlier studies have shown that the South Indian population has a high incidence of this enzyme deficiency. The electrophoretic mobility, pH optimum and the K-m values for G6PD from normal and variant individuals were identical. However, the specific activity of the variant enzyme was 8 times less compared to the value of the normal enzyme. Western blot analysis of partially purified G6PD from normal and variant individuals performed using equal amounts of total protein showed that the variant protein was 3 times less in concentration. Similar analysis performed using protein corresponding to equal enzyme activity units in the normal and variant samples showed that the variant enzyme was 2.25 times less efficient compared to the normal enzyme. RNA dot blot analysis using full length G6PD cDNA probe (PGDT5B, a kind gift from Prof. L Luzzatto) revealed that lymphocytes from normal and variant individuals had equal amounts of G6PD specific mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Methods: Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Results: Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Conclusion: Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. To examine the association of blood antioxidants with cataract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Lipoprotein lipase (LPL), a pivotal enzyme in lipoprotein metabolism, catalyzes the hydrolysis of triglycerides of very low-density lipoproteins and chylomicrons. Assuming that the variants in the promoter of the LPL gene may be associated with changes in lipid metabolism leading to obesity and type 2 diabetes, we examined the role of promoter variants (-T93G and -G53C) in the LPL gene in an urban South Indian population. METHODS: The study subjects (619 type 2 diabetic and 731 normal glucose-tolerant (NGT) subjects) were chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP). Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. RESULTS: The two polymorphisms studied were not in LD. The -T93G was not associated with type 2 diabetes but was associated with obesity. 11.5% of the obese subjects (62/541) had the XG(TG+GG) genotype compared with 6.4% of the nonobese subjects (52/809; P=0.001). The odds ratio for obesity for the XG genotype was 1.766 (95% CI: 1.19-2.63, P=0.005). Subjects with XG genotype also had higher body mass index and waist circumference compared with those with TT genotype. With respect to G53C, subjects with the XC(GC+CC) genotype had 0.527 and 0.531 times lower risk for developing type 2 diabetes and obesity, respectively. CONCLUSIONS: Among Asian Indians, the -T93G SNP of the LPL gene is associated with obesity but not type 2 diabetes, whereas the -G53C SNP appears to be protective against both obesity and type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.