992 resultados para India energy 2050
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
Purpose: A variety of biomass plantations are being raised for energy production. This case study is on energy production potential of seasonal oil bearing crops in India. These crops have the advantage of producing oil (liquid fuel) as well as biomass as agro residue (solid fuel). The purpose of the study is to estimate total energy yields of oil bearing crops and compare with other types of energy plantations. Also oil bearing crops bioaccumulate metals and thus phytoremediate soil. This provides scope for waste water irrigation. Design/methodology/approach: Relevant published papers on energy production by raising oil bearing crops have been analyzed. The effect of waste water irrigation and agronomic practices on increasing productivity is given special attention. Findings: It is shown that the seasonal oil bearing crops such as castor have a high potential to generate energy and this is comparable to energy produced by many perennial grasses. The energy yields of castor under irrigated condition was 196×103 MJ/ha and this is comparable to the reed canary grass which yields 195×103 MJ/ha. Some of the oil bearing crops are also super accumulators of certain toxic metals. Research limitations/implications: In this study, only all the accessible papers on the topic could be analyzed. Practical implications: This case study indicates that raising oil bearing crops such as castor using waste water has many advantages which include high energy yields, utilization of waste water for productive purpose and phytoremediation of soil. Originality/value: The comparison made between various types of energy crops for their energy generation is an original contribution. Findings of economic and environmental benefits by waste water irrigation are also of value. © Emerald Group Publishing Limited.
Resumo:
We assess the feasibility of hybrid solar-biomass power plants for use in India in various applications including tri-generation, electricity generation and process heat. To cover this breadth of scenarios we analyse, with the help of simulation models, case studies with peak thermal capacities ranging from 2 to 10 MW. Evaluations are made against technical, financial and environmental criteria. Suitable solar multiples, based on the trade-offs among the various criteria, range from 1 to 2.5. Compared to conventional energy sources, levelised energy costs are high - but competitive in comparison to other renewables such as photovoltaic and wind. Long payback periods for hybrid plants mean that they cannot compete directly with biomass-only systems. However, a 1.2-3.2 times increase in feedstock price will result in hybrid systems becoming cost competitive. Furthermore, in comparison to biomass-only, hybrid operation saves up to 29% biomass and land with an 8.3-24.8 $/GJ/a and 1.8-5.2 ¢/kWh increase in cost per exergy loss and levelised energy cost. Hybrid plants will become an increasingly attractive option as the cost of solar thermal falls and feedstock, fossil fuel and land prices continue to rise. In the foreseeable future, solar will continue to rely on subsidies and it is recommended to subsidise preferentially tri-generation plants. © 2012 Elsevier Ltd.
Resumo:
Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community's perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them. © 2014 Elsevier Ltd.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais
Resumo:
This paper presents a comparison of the changes in the energetic metabolic pattern of China and India, the two most populated countries in the world, with two economies undergoing an important economic transition. The comparison of the changes in the energetic metabolic pattern has the scope to characterize and explain a bifurcation in their evolutionary path in the recent years, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The analysis shows an impressive transformation of China’s energy metabolism determined by the joining of the WTO in 2001. Since then, China became the largest factory of the world with a generalized capitalization of all sectors ―especially the industrial sector― boosting economic labor productivity as well as total energy consumption. India, on the contrary, lags behind when considering these factors. Looking at changes in the household sector (energy metabolism associated with final consumption) in the case of China, the energetic metabolic rate (EMR) soared in the last decade, also thanks to a reduced growth of population, whereas in India it remained stagnant for the last 40 years. This analysis indicates a big challenge for India for the next decade. In the light of the data analyzed both countries will continue to require strong injections of technical capital requiring a continuous increase in their total energy consumption. When considering the size of these economies it is easy to guess that this may induce a dramatic increase in the price of energy, an event that at the moment will penalize much more the chance of a quick economic development of India.
Resumo:
During November and December 1992 I visited several groups involved with renewable energy, most of them dealing with education. These groups and their work are described briefly in this report. The groups in Melbourne, Australia have come a long way with education in this field and we have a lot to learn from them. Government funding is needed for large scale work, but useful work can still be done at the community level with much smaller budgets.
Resumo:
The ISES Solar World Congress Clean and Safe Energy Forever was held in Kobe, Japan, September 4-8, 1989. Short impressions from the conference and the simultaneous exhibition are given. On our (separate) ways to Kobe, Eriksson visited institutions in the Bombay, India area, and Broman one institution in Islamabad, Pakistan. Accounts of these visits are given. Three papers presented in Kobe are included in an Appendix.
Resumo:
In developing economies, consumption of electricity in residential and commercial sectors increased with economic development. In order to identify the factors for effective facilitation of standard and labeling programs, this article explores factors that affect consumer choice to energy-efficient products. Main findings are as follows: (1)Consumers in Thailand shows the highest awareness to environmental friendly concepts, followed by India and China.(2) Chosen labeled products include air-conditioners, TVs, refrigerators and washing machines, but not some popular products such as ceiling fans, electric fans or mobile phones. (3) Consumer who has higher energy conservation perception will buy energy efficient products.(4) Consumers in China, India and Thailand are sensitive to energy efficiency of products, primarily because they lead to less expenditure on electricity. (5) Labeling works to make levels of the energy efficiency of products more visible and thus helped consumers to choose the products.
Resumo:
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with expected shortages. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy-conservation and energy-efficiency can make an important contribution in the national energy strategy, renewable energies will be essential to the solution and are likely to play an increasingly important role for the growth of grid power, providing energy access, reducing consumption of fossil fuels, and helping India pursue its low carbon progressive pathway. However, most of the states in India, like the northernmost State of Jammu and Kashmir (J&K), have experienced an energy crisis over a sustained period of time. As India intends to be one of the emerging powers of the 21st century, it has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within J&K and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.
Resumo:
The future economic growth for India is likely to result in rapid and accelerated surge in energy demand, with expected shortages in terms of supply. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy conservation and energy efficiency can make an important contribution, renewable energies will be essential to the solution and are likely to play an increasingly important role for providing enhanced energy access, reducing consumption of fossil fuels, and helping India pursue its low-carbon progressive pathway. However, most of the states in India, like the northernmost state of Jammu and Kashmir, have experienced an energy crisis over a sustained period of time and the government both at center and state level has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within Jammu and Kashmir and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.
Resumo:
This paper assesses the impact of decarbonisation of the energy sector on employment in Europe. Setting the stage for such an assessment, the paper provides an analysis of possible pathways to decarbonise Europe’s energy system, taking into account EU greenhouse gas emissions reduction targets for 2020 and 2050. It pays particular attention to various low-carbon technologies that could be deployed in different regions of the EU. It concludes that efficiency and renewables play a major role in any decarbonisation scenario and that the power sector is the main enabler for the transition to a low-carbon economy in Europe, despite rising electricity demand. The extent of the decline in the share of fossil fuels will largely depend on the existence of carbon capture and storage (CCS), which remains a major source of uncertainty.