915 resultados para Incomplete structural models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.

RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.

CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable assessment of the quality of protein structural models is fundamental to the progress of structural bioinformatics. The ModFOLD server provides access to two accurate techniques for the global and local prediction of the quality of 3D models of proteins. Firstly ModFOLD, which is a fast Model Quality Assessment Program (MQAP) used for the global assessment of either single or multiple models. Secondly ModFOLDclust, which is a more intensive method that carries out clustering of multiple models and provides per-residue local quality assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with the issue of performing accurate testing inference on a scalar parameter of interest in structural errors-in-variables models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as special case. We derive a modified signed likelihood ratio statistic that follows a standard normal distribution with a high degree of accuracy. Our Monte Carlo results show that the modified test is much less size distorted than its unmodified counterpart. An application is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a general method for constructing similar tests based on the conditional distribution of nonpivotal statistics in a simultaneous equations model with normal errors and known reducedform covariance matrix. The test based on the likelihood ratio statistic is particularly simple and has good power properties. When identification is strong, the power curve of this conditional likelihood ratio test is essentially equal to the power envelope for similar tests. Monte Carlo simulations also suggest that this test dominates the Anderson- Rubin test and the score test. Dropping the restrictive assumption of disturbances normally distributed with known covariance matrix, approximate conditional tests are found that behave well in small samples even when identification is weak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces an efficient method to generate structural models for medium-sized silicon clusters. Geometrical information obtained from previous investigations of small clusters is initially sorted and then introduced into our predictor algorithm in order to generate structural models for large clusters. The method predicts geometries whose binding energies are close (95%) to the corresponding value for the ground-state with very low computational cost. These predictions can be used as a very good initial guess for any global optimization algorithm. As a test case, information from clusters up to 14 atoms was used to predict good models for silicon clusters up to 20 atoms. We believe that the new algorithm may enhance the performance of most optimization methods whenever some previous information is available. (C) 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the differential effects of first- (FGAs) versus second-generation antipsychotics (SGAs) on subjective well-being in patients with schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive care unit (ICU) patients are ell known to be highly susceptible for nosocomial (i.e. hospital-acquired) infections due to their poor health and many invasive therapeutic treatments. The effects of acquiring such infections in ICU on mortality are however ill understood. Our goal is to quantify these effects using data from the National Surveillance Study of Nosocomial Infections in Intensive Care Units (Belgium). This is a challenging problem because of the presence of time-dependent confounders (such as exposure to mechanical ventilation)which lie on the causal path from infection to mortality. Standard statistical analyses may be severely misleading in such settings and have shown contradicting results. While inverse probability weighting for marginal structural models can be used to accommodate time-dependent confounders, inference for the effect of ?ICU acquired infections on mortality under such models is further complicated (a) by the fact that marginal structural models infer the effect of acquiring infection on a given, fixed day ?in ICU?, which is not well defined when ICU discharge comes prior to that day; (b) by informative censoring of the survival time due to hospital discharge; and (c) by the instability of the inverse weighting estimation procedure. We accommodate these problems by developing inference under a new class of marginal structural models which describe the hazard of death for patients if, possibly contrary to fact, they stayed in the ICU for at least a given number of days s and acquired infection or not on that day. Using these models we estimate that, if patients stayed in the ICU for at least s days, the effect of acquiring infection on day s would be to multiply the subsequent hazard of death by 2.74 (95 per cent conservative CI 1.48; 5.09).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal design of a vertical cantilever beam is presented in this paper. The beam is assumed immersed in an elastic Winkler soil and subjected to several loads: a point force at the tip section, its self weight and a uniform distributed load along its length. lbe optimal design problem is to find the beam of a given length and minimum volume, such that the resultant compressive stresses are admisible. This prohlem is analyzed according to linear elasticity theory and within different alternative structural models: column, Navier-Bernoulli beam-column, Timoshenko beamcolumn (i.e. with shear strain) under conservative loads, typically, constant direction loads. Results obtained in each case are compared, in order to evaluate the sensitivity of model on the numerical results. The beam optimal design is described by the section distribution layout (area, second moment, shear area etc.) along the beam span and the corresponding beam total volume. Other situations, some of them very interesting from a theoretical point of view, with follower loads (Beck and Leipholz problems) are also discussed, leaving for future work numerical details and results.