590 resultados para Incised valleys
Resumo:
The evolution of paleo-incised-valleys in the Sao Paulo State region of the southeastern Brazilian continental shelf is presented in this study in relation to the post Last Glacial Maximum (LGM) sea-level rises based on the submarine topography modeled by a detailed Digital Elevation Model and evidences noted in high resolution seismic profiles. The hypothesis that has guided this study is that the set of paleo-valley characteristics (i.e. the fluvial parameters of modern coastal drainage systems, the topographical shape and dimensions of the valleys and of the subsurface channels) may indicate aspects of the relation between the influence of the fluvial and the eustatic variation regime in geomorphological-stratigraphic registers. Models described in the literature sustain the view that faster marine transgressions tend to increase erosion in estuaries, which may explain the lack of registers of paleo-drainage both in topography and the sub-surface in areas with wider shelves. On the other hand, on narrower shelves, with a higher slope angle, the transgression process can preserve, or even enhance, the incised valley registers during shoreface retreat. In the area studied, we observed that the dimensions and form of the continental shelf varies from the northern to the southern part of the area, affecting aspects of the geomorphological registers of the submerged incised valleys.
Resumo:
Palaeogeographic and tectono-sedimentary interpretation of northern Portugal, in which previous studies (geomorphology, lithostratigraphy, mineralogy, sedimentology, palaeontology, etc.) were considered, is here proposed. Cenozoic shows different features according to its morphotectonic setting in the eestern region (Trás-os-Montes) or near to the Atlantic coast (western region, Minho and Douro Litoral areas). Although in the eastern region the sedimentary record is considered late Neogene, in some places Paleogene (?) was identified. This oldest record, represented by alluvial deposits, was preserved from complete erosion because of its position inside Bragança-Vilariça-Manteigas fault zone grabens. Later sedimentary episodes (upper Tortonian-Zanclean ?), represented by two allostratigraphical units, were interpreted as proximal fluvial braided systems of an endorheic hydrographic network, draining to the Spanish Duero Basin (eastwards); nowadays, they still remained in tectonic depressions and incised-valleys. Later on, eastern sedimentation becomes scarcer because Atlantic fluvial systems (e.g. the pre-Douro), successively, captured previous endorheic drainages. The proximal reaches of the allostratigraphic unit considered Placencian is recorded in Mirandela (western Trás-os-Montes) but the following fluvial episode (Gelasian-early Pleistocene ?) was already documented in east Trás-os-Montes, preserved in high platforms and in tectonic depressions. Placencian and Quaternary sedimentary records in the western coastal zone, mainly represented by terraces, are located in the Minho, Lima, Alverães, Cávado and Ave large fluvial valleys and in the Oporto littoral platform. In conclusion, northern Portugal Tertiary sedimentary episodes were mainly controlled by tectonics, but later on (Placencian-Quaternary) also by eustasy.
Resumo:
The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The brazilian marginal basins have a huge potential to generate and accumulate petroleum. Incised valleys which are eroded in response to a fall of relative sea level are related to potential reservoir as well, modern drowned-valley estuaries serve as harbors to petroleum and salt industries, fisheries, waste-disposal sites and recreational areas for a significant fraction of the world s population. The combined influence of these factors has produced a dramatic increase in research on modern and ancient incised-valley systems. This research is one expression of this interest. The integrated use of satellites images and high resolution seismic (bathymetry, sides scan sonar) was used on the Apodi River mouth-RN to characterizes the continental shelf This area is located at the Potiguar Basin in the NE Brazilian Equatorial Atlantic margin. Through bathymetric and side scan sonar data processing, a digital Terrain Model was developed, and a detailed geomorphologic analysis was performed. In this way was possible to recognize the geomorphologic framework and differents sismofacies, which may influence this area. A channel extending from the ApodiMossoró river mouth to the shelf edge dominates the investigated area. This structure can be correlated with the former river valley developed during the late Pleistocene sea level fall. This channel has two main directions (NW-SE and NE-SW) probably controlled by the Potiguar Basin structures. The western margin of the channel is relatively steep and pronounced whereas the eastern margin consists only of a gentle slope. Longitudinal bedforms and massive ridges also occur. The first are formed doe to the shelf sediment rework and the reef-like structures probably are relics of submerged beachrock-lines indicating past shoreline positions during the deglacial sea-level rise. The sub-bottom seismic data allow the identification of different sismic patterns and a marcant discontinuity, interpreted as the Upper
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O uso de novas técnicas para estudar a evolução e preenchimento de vales incisos tem fornecido, ao longo dos anos, importantes resultados para entendermos como foi a evolução costeira brasileira. Neste contexto, esta tese teve como objetivo estudar a evolução do estuário do rio Coreaú, localizado no estado do Ceará, em diferentes escalas temporais, seja “Eventual” (meses, anos), “Engenharia” anos, decádas) e Geológica” (centenas, séculos, milênios), proposta por Cowell et al. (2003), com intuíto de avaliar se as transformações/alterações ao longo dos anos foram significativas ou não. Como resultados, obteve-se no primeiro objetivo, utilizando técnicas de sensoriamento remoto, a partir de imagens dos sensores TM, ETM+ e OLI do satélite Landsat 5,7 e 8 e LISS-3 do satélite ResourceSat-1 de 1985 a 2013, uma alteração mínima em relação a transformações morfológicas ao longo do estuário nos últimos 28 anos (entre as escalas Eventual e de Engenharia), houve neste período um acréscimo de 0,236 km2 (3%) de área, não trazendo sigificativas mudanças para o estuário. Em relação a taxa de sedimentação, correspondente ao segundo bjetivo, a partir da coleta de 9 testemunhos, de até 1 m de profundidade e utilizando o radionuclídeo 210Pb, ao longo do estuário, obteve-se uma taxa que variou de 0,33 cm/ano a 1 cm/ano (escalas entre Engenharia e Geológica) próximo a foz do estuário, e com uma rápida sedimentação percebida na margem leste do rio, onde encontram-se sedimentos mais recentes em relação a margem oeste. Em relação ao preenchimento, terceiro e último objetivo, a partir da amostragem de testemunhos de até 18 m de profundidade, utilzando o amostrador Rammkernsonden (RKS), foram gerados perfis e seções estratigráficas que ajudaram a entender o preenchimento do vale inciso do estuário do rio Coreaú e entender que trata-se de um estuário fluvio-marinho, preenchendo os vales formados no Grupo Barreiras nos últimos 10.000 anos antes do presente. Estas análises e resultados servirão como base para comparação com outros estuários, sejam fluviais, fluvio-marinhos ou marinhos, para entendermos melhor quais os possíveis eventos que dominaram a sedimentação ao longo da costa brasileira em diferentes escalas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The diverse Holocene morphological features along the south coast of the state of Santa Catarina include lagoons and residual lakes, a barrier, a delta (constructed by the Tubarao River), and pre-existing incised valleys that have flooded and filled. This scenario contains the sedimentary record of the transition from a bay to a lagoon system, which occurred during the rise and subsequent semi-stabilisation of the relative sea-level during the Holocene. The geomorphological evolution of this area was investigated using a combination of morphology, stratigraphic analysis of rotary push cores, vibracores and trenches with radiocarbon dating, taxonomic determination and taphonomic characterisation of Holocene fossil molluscs. Palaeogeographic maps were constructed to illustrate how the bay evolved over the last 8000 years. The relative sea-level rise and local sedimentary processes were the prime forcing factors determining the depositional history and palaeogeographic changes. The Holocene sedimentary succession began between 8000 and 5700 cal BP with the deposits of transgressive sandsheets. These deposits correspond to the initial marine flooding surface that was formed while the relative sea-level rose at a higher rate than the input of sediments, prior to the formation of the coastal barrier. The change from a bay to a lagoon system occurred around 5700 and 2500 cal BP during the mid-Holocene highstand with the formation of the barrier and with the achievement of a balance between sea-level rise and sedimentary supply. Until 2500 cal BP, the presence of this barrier, the following gentle decline in sea level and the initial emergence of back-barrier features restricted the hydro-dynamic circulation inside the bay and favoured an increase in the Tubarao River delta progradation rate. The final stage, during the last 2500 years, was marked by the increasing back-barrier width, with the establishment of salt marshes, the arrival of the delta in the back-barrier, and the advance of aeolian dunes along the outer lagoon margins. This study shed light on the mechanisms of coastal bay evolution in a setting existed prior to the beginning of barrier lagoon sedimentation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Western Escarpment of the Andes at 18.30°S (Arica area, northern Chile) is a classical example for a transient state in landscape evolution. This part of the Andes is characterized by the presence of >10,000 km2 plains that formed between the Miocene and the present, and >1500 m deeply incised valleys. Although processes in these valleys scale the rates of landscape evolution, determinations of ages of incision, and more importantly, interpretations of possible controls on valley formation have been controversial. This paper uses morphometric data and observations, stratigraphic information, and estimates of sediment yields for the time interval between ca. 7.5 Ma and present to illustrate that the formation of these valleys was driven by two probably unrelated components. The first component is a phase of base-level lowering with magnitudes of∼300–500 m in the Coastal Cordillera. This period of base-level change in the Arica area, that started at ca. 7.5 Ma according to stratigraphic data, caused the trunk streams to dissect headward into the plains. The headward erosion interpretation is based on the presence of well-defined knickzones in stream profiles and the decrease in valley widths from the coast toward these knickzones. The second component is a change in paleoclimate. This interpretation is based on (1) the increase in the size of the largest alluvial boulders (from dm to m scale) with distal sources during the last 7.5 m.y., and (2) the calculated increase in minimum fluvial incision rates of ∼0.2 mm/yr between ca. 7.5 Ma and 3 Ma to ∼0.3 mm/yr subsequently. These trends suggest an increase in effective water discharge for systems sourced in the Western Cordillera (distal source). During the same time, however, valleys with headwaters in the coastal region (local source) lack any evidence of fluvial incision. This implies that the Coastal Cordillera became hyperarid sometime after 7.5 Ma. Furthermore, between 7.5 Ma and present, the sediment yields have been consistently higher in the catchments with distal sources (∼15 m/m.y.) than in the headwaters of rivers with local sources (<7 m/m.y.). The positive correlation between sediment yields and the altitude of the headwaters (distal versus local sources) seems to reflect the effect of orographic precipitation on surface erosion. It appears that base-level change in the coastal region, in combination with an increase in the orographic effect of precipitation, has controlled the topographic evolution of the northern Chilean Andes.
Resumo:
On the Vietnam Shelf more than 1000 miles of shallow high-resolution seismics were analyzed to unravel post-glacial evolution in a tropical, siliciclastic environment together with 25 sediment cores from water depths between 21 and 169 m to determine stratigraphy, distribution and style of sedimentation. Fourty-seven samples were dated with the AMS-14C technique. The shelf was grouped into three regions: a southern part, a central part, and a northern part. On the broad Southern Shelf, sedimentation is influenced by the Mekong River, which drains into the SCS in this area. Here, incised valley fills are abundant that were cut into the late Pleistocene land surface by the Paleo-Mekong River during times of sea level lowstand. Those valleys are filled with transgressive deposits. The Holocene sedimentation rate in this low gradient accommodation-dominated depositional system is in the range of 5-10 and 25-40 cm/ky at locations sheltered from currents. The Central Shelf is narrow and the sedimentary strata are conformable. Here, numerous small mountainous rivers reach the SCS and transport large amounts of detrital sediment onto the shelf. Therefore, the Holocene sedimentation rate is high with values of 50-100 cm/ky in this supply-dominated depositional system. The broad Northern Shelf in the vicinity of the Red River Delta shows, as on the Southern Shelf, incised valleys cut into the Pleistocene land surface by paleo river channels. In this accommodation-dominated shelf area, the sedimentation rate is low with values of 5-10 cm/ky. Where applicable, we assigned the sampled deposits to different paleo-facies. The latter are related to certain intervals of water depths at their time of deposition. Comparison with the sea-level curve of (Hanebuth et al., 2000, doi:10.1126/science.288.5468.1033) indicates subsidence on the Central Shelf, which is in agreement with the high sedimentation rates in this area. In contrast, data from the Northern Shelf suggest tectonic uplift that might be related to recent tectonic movements along the Ailao Shan-Red River Fault zone. Data from the Southern Shelf are generally in agreement with the sea-level curve mentioned above.
Resumo:
Systems of incised valleys have been studied in different continental shelves, including the Brazilian continental margin. The interest to characterize this feature is given by the information that it can provide variations on sea level, as well as the ability to host economically significant quantities of hydrocarbons in reservoirs located in deposits filling of the incised valleys. This thesis has the overall objective to characterize the morphology and sedimentary cover of the incised valley Apodi-Mossoró, located in the Northern Continental shelf of Rio Grande do Norte state, adjacent to Areia Branca city. The methodology included the integration of satellite imagery, bathymetric data, sedimentological data, shallow seismic, and the identification of foraminifera. The results indicate that the ApodiMossró incised valley is currently formed by two channels, shallow channel and deep channel, which have distinct morphological and sedimentological characteristics. The deep channel has connection with one of the heads of the Apodi Canyon, located in the slope area. The acquisition, processing and interpretation of shallow seismic data allowed the recognition of the depositional surface, erosional surface, discordance, and sismofaceis. The erosional surface mapped from shallow seismic sections is possibly a indicative of an ancient surface of valley incision, where it would probably be associated with the limit Pleistocene/Holocene. Different sismofaceis were identified and reflect the rise in sea level with standards sometimes agradacional, sometimes progradational. The thickness of sediments on this surface was estimated at a maximum of 22m thick in the central portion of the incised valley. Statistically, there are differences between the adjacent continental shelf and channels, and between these channels, for the content of calcium carbonate, organic matter, sand and mud perceptual, except for the gravel grain size. The analysis of living and dead foraminifera showed the presence of fifty species distributed in regards to morphology, depth and type of sediment. Four type of seismic echocharacteres were identified and mapped, as well as their bedforms, indicating different sedimentary processes along the incised valley. The integration of results suggests an activation of the Apodi-Mossoró incised valley in the Late Pleistocene.
Resumo:
The Padul-Nigüelas Fault Zone (PNFZ) is situated at the south-western mountain front of the Sierra Nevada (Spain) in an extensive regime and belongs to the internal zone of the Betic Cordilleras. The aim of this study is a collection of new evidence for neotectonic activity of the fault zone with classical geological field work and modern geophysical methods, such as ground penetrating radar (GPR). Among an apparently existing bed rock fault scarp with triangular facets, other evidences, such as deeply incised valleys and faults in the colluvial wedges, are present in the PNFZ. The preliminary results of our recent field work have shown that the synsedimentary faults within the colluvial sediments seem to propagate basinwards and the bed rock fault is only exhumed due to erosion for the studied segment (west of Marchena). We will use further GPR data and geomorphologic indices to gather further evidences of neotectonic activity of the PNFZ.
Resumo:
The Belgian coastal plain occupies a key position as it is located at the transition between the Southern North Sea Basin and the Strait of Dover. It is characterized by thick sequences (> 20 m) of Pleistocene terrestrial and littoral sediments. Yet the wider stratigraphical and palaeo-environmental significance of these sediments received little attention. In this paper we draw on the results of a recent sedimentological study based on > 100 drillings that spans the Pleistocene sequence, and present new biostratigraphical (pollen, foraminifera, ostracods) data, all revealing a complex history of deposition. The record includes evidence of the development of incised-valley systems that were initiated in the late Middle and Late Pleistocene. Five phases of fluvial incision can be identified. The majority of the infills are deposited in an estuarine environment that passes into a fluvial environment land inward, except the Weichselian infill which has a predominant fluvial origin. The greatest part of the most seaward located zone of the western coastal plain was free of valley incisions, there, shallow marine sediments built up the record. Local biostratigraphical investigations provide a timeframe. The result is placed in a regional context.
Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow
Resumo:
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.