975 resultados para Incident solar radiation
Resumo:
Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt) and plant litter data (N, K, Ca, P, and Mg) were gathered together with the geographic coordinates (to model the spatial structure) of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each). Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.
Resumo:
The present paper refers to a research work carried out at the Dept. of Agriculture and Horticulture of ESALQ, University of São Paulo, in Piracicaba, State of São Paulo (latitude 22º42'S, longitude 47º33' WG and altitude 546 m). Sowing at different times and using artificial cover, an attempt was made to evaluate the behavior of cultivar IAC 17 of cotton (Gossypium hirsutum L.) as to production and quality of fiber relating to incident solar radiation. Incident solar radiation, as well as insolation during the trial period, were tabulated and compared with yelds and agricultural and technological characters of fibers. The treatment under cover showed a mean level of incident solar radiation equivalent to less than 20% of that at clear sky, causing a decrease in cotton production and in the agricultural and technological characters of fibers.
Resumo:
Evaluation has been made on the monthly and annual average diurnal evolution of the hourly diffuse radiation as well as its radiometric fractions on surfaces inclined at 12.85, 22.85 and 32.85° to face North, in climate conditions of Botucatu, São Paulo, Brazil (22.85° S and 48.43° W). Measurements were made between 04/1998 to 08/2001 for 22.85°; 09/2001 to 02/2003 for 12.85° and 01/2004 to 12/2007 for 32.85°, with concomitant measures in the horizontal. For all surfaces the diffuse radiation was obtained from different method. Assessment has been performed as well on the radiometric fractions obtained from the ratio of diffuse radiation and global radiation (KDH and KDβ) and between radiation and diffuse radiation at the top of the atmosphere (KʹDH and KʹDβ) for the horizontal and tilted surfaces in hourly partition. The diffuse radiation levels were dependent on variations in precipitation and cloudiness. There was an increase in the differences between the diffuse radiation and the radiometric fractions with the increment of the angle, and in horizontally, which affected higher levels of diffuse radiation in spring and summer. The values of KDH and KDβ present in an inverse behavior were compared to diffuse radiation and theydecreased in the southern passage due to the increase of the direct component in the total of incident radiation.
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
Measurements of solar radiation over and under sea ice have been performed on various stations in the Arctic Ocean during the Polarstern cruise PS92 (TRANSSIZ) between 19 May and 30 June 2015. All radiation measurements have been performed with Ramses spectral radiometers (Trios, Rastede, Germany). All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors were mounted on a Remotely Operated Vehicle (ROV) and one radiometer was installed on the sea ice for surface reference measurements (solar irradiance). On the ROV, one irradiance sensor (cos-collector) for energy budget calculations and one radiance sensor (9° opening angle) to obtain high resolution spatial variability were installed. Along with the radiation measurements, ROV positions were obtained from acoustic USBL-positioning and all parameters of vehicle depth, distance to the ice and attitude recorded. All times are given in UTC.
Resumo:
The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m**2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
Resumo:
The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems. It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems. Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
A mathematical model has been developed for predicting the spectral distribution of solar radiation incident on a horizontal surface. The solar spectrum in the wavelength range 0.29 to 4.0 micrometers has been divided in 144 intervals. Two variables in the model are the atmospheric water vapour content and atmospheric turbidity. After allowing for absorption and scattering in the atmosphere, the spectral intensity of direct and diffuse components of radiation are computed. When the predicted radiation levels are compared with the measured values for the total radiation and the values with glass filters RG715, RG630 and OG530, a close agreement (± 5%) has been achieved under clear sky conditions. A solar radiation measuring facility, close to the centre of Birmingham, has been set up utilising a microcomputer based data logging system. A suite of computer programs in the BASIC programming language has been developed and extensively tested for solar radiation data, logging, analysis and plotting. Two commonly used instruments, the Eppley PSP pyranometer and the Kipp and Zonen CM5 pyranometer, have been compared under different experimental conditions. Three models for computing the inclined plane irradiation, using total and diffuse radiation on a horizontal surface, have been tested for Birmingham. The anisotropic-alI-sky model, proposed by Klucher, provides a good agreement between the measured and the predicted radiation levels. Measurements of solar spectral distribution, using glass filters, are also reported for a number of inclines facing South.
Resumo:
Proyecto de investigación elaborado a partir de una estancia en el Institute for Atmospheric and Climate Science, a Alemanya, entre 2010 y 2012. La radiación solar que alcanza la superficie terrestre es un factor clave entre los procesos que controlan el clima de la Tierra, dado el papel que desempeñan en el balance energético y el ciclo hidrológico. Establecer su contribución al cambio climático reciente supone una gran dificultad debido a la complejidad de los procesos implicados, la gran cantidad de información requerida, y la incertidumbre de las bases de datos disponibles en la actualidad. Así, el objetivo principal del proyecto ha consistido en generar una base de datos de insolación incluyendo las series más largas (desde finales del siglo XIX) disponibles en toda Europa. Esta base de datos complementa para nuestro continente el Global Energy Balance Archive (GEBA) que mantiene y gestiona el grupo que ha acogido al receptor de la ayuda postdoctoral, y permite extender espacial (especialmente en países del sur de Europa) y temporalmente las series climáticas disponibles de mediciones de irradiancia solar. Como la insolación es un proxy de la irradiancia solar, el proyecto actual también ha tratado de calibrar de forma exhaustiva ambas variables, a fin de generar una nueva base de datos reconstruida de esta segunda variable que esté disponible desde finales del siglo XIX en Europa. Un segundo objetivo del proyecto ha consistido en continuar trabajando a escala de mayor detalle sobre la Península Ibérica, con el fin de proporcionar una mejor comprensión del fenómeno del “global dimming/brightening” y su impacto en el ciclo hidrológico y balance energético. Finalmente, un tercer objetivo del presente proyecto postdoctoral ha consistido en continuar estudiando los posibles ciclos semanales a gran escala de diferentes variables climáticas, línea de investigación de interés para la detección de posibles efectos de los aerosoles antrópicos en el clima a escalas temporales breves, y consecuentemente estrechamente vinculado al fenómeno del “global dimming/brightening”.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
The objective of this work was to evaluate the efficiency of soybean (Glycine max) in intercepting and using solar radiation under natural field conditions, in the Amazon region, Brazil. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, Pará state, during 2007 and 2008. The radiation use efficiency (RUE) was obtained from the ratio between the above-ground biomass production and the intercepted photosynthetically active radiation (PAR) accumulated to 99 and 95 days after sowing, in 2007 and 2008, respectively. Climatic conditions during the experiment were very distinct, with reduction in rainfall in 2007, which began during the soybean mid-cycle, due to the El Niño phenomenon. An important reduction in the leaf area index and biomass production was observed during 2007. Under natural field conditions in the Amazon region, the values of RUE were 1.46 and 1.99 g MJ-1 PAR in the 2007 and 2008 experiments, respectively. The probable reason for the differences found between these years might be associated to the water restriction in 2007 coupled with the higher air temperature and vapor pressure deficit, and also to the increase in the fraction of diffuse radiation that reached the land surface in 2008.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database
Resumo:
Solar radiation is an important factor for plant growth, being its availability to understory crops strongly modified by trees in an Agroforestry System (AFS). Coffee trees (Coffea arabica - cv. Obatã IAC 1669-20) were planted at a 3.4 x 0.9 m spacing inside and aside rows of monocrops of 12 year-old rubber trees (Hevea spp.), in Piracicaba-SP, Brazil (22º42'30" S, 47º38'00" W - altitude: 546m). One-year-old coffee plants exposed to 25; 30; 35; 40; 45; 80; 90; 95 and 100% of the total solar radiation were evaluated according to its biophysical parameters of solar radiation interception and capture. The Goudriaan (1977) adapted by Bernardes et al. (1998) model for radiation attenuation fit well to the measured data. Coffee plants tolerate a decrease in solar radiation availability to 50% without undergoing a reduction on growth and LAI, which was approximately 2m².m-2 under this condition. Further reductions on the availability of solar radiation caused a reduction in LAI (1.5m².m-2), thus poor land cover and solar radiation interception, resulting in growth reduction.