973 resultados para InAs quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom, and the acceptor hole. Our model permits linking the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, A0 or A−, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs photoluminescence spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current prototypes of quantum-dot intermediate band solar cells suffer from voltage reduction due to the existence of carrier thermal escape. An enlarged sub-bandgap EL would not only minimize this problem, but would also lead to a bandgap distribution that exploits more efficiently the solar spectrum. In this work we demonstrate InAs/InGaP QD-IBSC prototypes with the following bandgap distribution: EG = 1.88 eV, EH = 1.26 eV and EL > 0.4 eV. We have measured, for the first time in this material, both the interband and intraband transitions by means of photocurrent experiments. The activation energy of the carrier thermal escape in our devices has also been measured. It is found that its value, compared to InAs/GaAs-based prototypes, does not follow the increase in EL. The benefits of using thin AlGaAs barriers before and after the quantum-dot layers are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser is demonstrated. A maximum output power of 455mW and a side-mode suppression ratio >45dB in the central part of the tuning range are achieved. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability. (C) 2010 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals? difference frequency ~1 THz.(C) 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate an ultra-compact, room-Temperature, continuous-wave, broadly-Tunable dual-wavelength InAs/GaAs quantum-dot external-cavity diode laser in the spectral region between 1150 nm and 1301 nm with maximum output power of 280 mW. This laser source generating two modes with tunable difference-frequency (300 GHz-30 THz) has a great potential to replace commonly used bulky lasers for THz generation in photomixer devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work focuses on experimental and theoretical studies aimed at establishing a fundamental understanding of the principal electrical and optical processes governing the operation of quantum dot solar cells (QDSC) and their feasibility for the realization of intermediate band solar cell (IBSC). Uniform performance QD solar cells with high conversion efficiency have been fabricated using carefully calibrated process recipes as the basis of all reliable experimental characterization. The origin for the enhancement of the short circuit current density (Jsc) in QD solar cells was carefully investigated. External quantum efficiency (EQE) measurements were performed as a measure of the below bandgap distribution of transition states. In this work, we found that the incorporation of self-assembled quantum dots (QDs) interrupts the lattice periodicity and introduce a greatly broadened tailing density of states extending from the bandedge towards mid-gap. A below-bandgap density of states (DOS) model with an extended Urbach tail has been developed. In particular, the below-bandgap photocurrent generation has been attributed to transitions via confined energy states and background continuum tailing states. Photoluminescence measurement is used to measure the energy level of the lowest available state and the coupling effect between QD states and background tailing states because it results from a non-equilibrium process. A basic I-V measurement reveals a degradation of the open circuit voltage (Voc) of QD solar cells, which is related to a one sub-bandgap photon absorption process followed by a direct collection of the generated carriers by the external circuit. We have proposed a modified Shockley-Queisser (SQ) model that predicts the degradation of Voc compared with a reference bulk device. Whenever an energy state within the forbidden gap can facilitate additional absorption, it can facilitate recombination as well. If the recombination is non-radiative, it is detrimental to solar cell performance. We have also investigated the QD trapping effects as deep level energy states. Without an efficient carrier extraction pathway, the QDs can indeed function as mobile carriers traps. Since hole energy levels are mostly connected with hole collection under room temperature, the trapping effect is more severe for electrons. We have tried to electron-dope the QDs to exert a repulsive Coulomb force to help improve the carrier collection efficiency. We have experimentally observed a 30% improvement of Jsc for 4e/dot devices compared with 0e/dot devices. Electron-doping helps with better carrier collection efficiency, however, we have also measured a smaller transition probability from valance band to QD states as a direct manifestation of the Pauli Exclusion Principle. The non-linear performance is of particular interest. With the availability of laser with on-resonance and off-resonance excitation energy, we have explored the photocurrent enhancement by a sequential two-photon absorption (2PA) process via the intermediate states. For the first time, we are able to distinguish the nonlinearity effect by 1PA and 2PA process. The observed 2PA current under off-resonant and on-resonant excitation comes from a two-step transition via the tailing states instead of the QD states. However, given the existence of an extended Urbach tail and the small number of photons available for the intermediate states to conduction band transition, the experimental results suggest that with the current material system, the intensity requirement for an observable enhancement of photocurrent via a 2PA process is much higher than what is available from concentrated sun light. In order to realize the IBSC model, a matching transition strength needs to be achieved between valance band to QD states and QD states to conduction band. However, we have experimentally shown that only a negligible amount of signal can be observed at cryogenic temperature via the transition from QD states to conduction band under a broadband IR source excitation. Based on the understanding we have achieved, we found that the existence of the extended tailing density of states together with the large mismatch of the transition strength from VB to QD and from QD to CB, has systematically put into question the feasibility of the IBSC model with QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs/GaAs1−xSbx Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain and hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.