993 resultados para In-situ Identification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant numbers of children are severely abused and neglected by parents and caregivers. Infants and very young children are the most vulnerable and are unable to seek help. To identify these situations and enable child protection and the provision of appropriate assistance, many jurisdictions have enacted ‘mandatory reporting laws’ requiring designated professionals such as doctors, nurses, police and teachers to report suspected cases of severe child abuse and neglect. Other jurisdictions have not adopted this legislative approach, at least partly motivated by a concern that the laws produce dramatic increases in unwarranted reports, which, it is argued, lead to investigations which infringe on people’s privacy, cause trauma to innocent parents and families, and divert scarce government resources from deserving cases. The primary purpose of this paper is to explore the extent to which opposition to mandatory reporting laws is valid based on the claim that the laws produce ‘overreporting’. The first part of this paper revisits the original mandatory reporting laws, discusses their development into various current forms, explains their relationship with policy and common law reporting obligations, and situates them in the context of their place in modern child protection systems. This part of the paper shows that in general, contemporary reporting laws have expanded far beyond their original conceptualisation, but that there is also now a deeper understanding of the nature, incidence, timing and effects of different types of severe maltreatment, an awareness that the real incidence of maltreatment is far higher than that officially recorded, and that there is strong evidence showing the majority of identified cases of severe maltreatment are the result of reports by mandated reporters. The second part of this paper discusses the apparent effect of mandatory reporting laws on ‘overreporting’ by referring to Australian government data about reporting patterns and outcomes, with a particular focus on New South Wales. It will be seen that raw descriptive data about report numbers and outcomes appear to show that reporting laws produce both desirable consequences (identification of severe cases) and problematic consequences (increased numbers of unsubstantiated reports). Yet, to explore the extent to which the data supports the overreporting claim, and because numbers of unsubstantiated reports alone cannot demonstrate overreporting, this part of the paper asks further questions of the data. Who makes reports, about which maltreatment types, and what are the outcomes of those reports? What is the nature of these reports; for example, to what extent are multiple numbers of reports made about the same child? What meaning can be attached to an ‘unsubstantiated’ report, and can such reports be used to show flaws in reporting effectiveness and problems in reporting laws? It will be suggested that available evidence from Australia is not sufficiently detailed or strong to demonstrate the overreporting claim. However, it is also apparent that, whether adopting an approach based on public health and or other principles, much better evidence about reporting needs to be collected and analyzed. As well, more nuanced research needs to be conducted to identify what can reasonably be said to constitute ‘overreports’, and efforts must be made to minimize unsatisfactory reporting practice, informed by the relevant jurisdiction’s context and aims. It is also concluded that, depending on the jurisdiction, the available data may provide useful indicators of positive, negative and unanticipated effects of specific components of the laws, and of the strengths, weaknesses and needs of the child protection system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology changes induced in polycrystalline silver catalysts as a result of heating in either oxygen, water or oxygen-methanol atmospheres have been investigated by environmental scanning electron microscopy (ESEM), FT-Raman spectroscopy and temperature programmed desorption (TPD). The silver catalyst of interest consisted of two distinct particle types, one of which contained a significant concentration of sub-surface hydroxy species (in addition to surface adsorbed atomic oxygen). Heating the sample to 663 K resulted in the production of 'pin-holes' in the silver structure as a consequence of near-surface explosions caused by sub-surface hydroxy recombination. Furthermore, 'pin-holes' were predominantly found in the vicinity of surface defects, such as platelets and edge structures. Reaction between methanol and oxygen also resulted in the formation of 'pin-holes' in the silver surface, which were inherently associated with the catalytic process. A reaction mechanism is suggested that involves the interaction of methanol with sub-surface oxygen species to form sub-surface hydroxy groups. The sub-surface hydroxy species subsequently erupt through the silver surface to again produce 'pin-holes'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilising archival human breast cancer biopsy material we examined the stromal/epithelial interactions of several matrix metalloproteinases (MMPs) using in situ-RT-PCR (IS-RT-PCR). In breast cancer, the stromal/epithelial interactions that occur, and the site of production of these proteases, are central to understanding their role in invasive and metastatic processes. We examined MT1-MMP (MMP-14, membrane type-1-MMP), MMP-1 (interstitial collagenase) and MMP-3 (stromelysin-1) for their localisation profile in progressive breast cancer biopsy material (poorly differentiated invasive breast carcinoma (PDIBC), invasive breast carcinomas (IBC) and lymph node metastases (LNM)). Expression of MT1-MMP, MMP-1 and MMP-3 was observed in both the tumour epithelial and surrounding stromal cells in most tissue sections examined. MT1-MMP expression was predominantly localised to the tumour component in the pre-invasive lesions. MMP-1 gene expression was relatively well distributed between both tissue compartments, while MMP-3 demonstrated highest expression levels in the stromal tissue surrounding the epithelial tumour cells. The results demonstrate the ability to distinguish compartmental gene expression profiles using IS-RT-PCR. Further, we suggest a role for MT1-MMP in early tumour progression, expression of MMP-1 during metastasis and focal expression pattern of MMP-3 in areas of expansion. These expression profiles may provide markers for early breast cancer diagnoses and present potential therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass tar restricts the wide application and development of biomass gasification technology. In the present paper, palygorskite, a natural magnesium-containing clay mineral, was investigated for catalytic pyrolysis of rape straw in situ and compared with the dolomite researched widely. The two types of natural minerals were characterized with XRD and BET. The results showed that combustible gas derived from the pyrolysis increased with an increase in gasification temperature. The Hconversion and Cconversion increased to 44.7% and 31% for the addition of palygorskite and increased to 41.3% and 31.3% for the addition of dolomite at the gasification temperature of 800 °C, compared with 15.1% and 5.6% without addition of the two types of material. It indicated that more biomass was converted into combustible gases implying the decrease in biomass tar under the function of palygorskite or dolomite and palygorskite had a slightly better efficiency than that of dolomite in the experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The vasoconstricting peptide endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, vascular smooth muscle cell (VSMC) growth stimulation, and intimal thickening. ET-1 binds 2 receptor subtypes, endothelin A and B, and the ETA receptor mediates vasoconstriction and VSMC growth. This study aims to quantitatively assess arterial remodeling variables and compare them with changes in ET-1, ETA, and ETB expression in the internal mammary artery (IMA). METHODS AND RESULTS: Specimens from 55 coronary artery disease (CAD) patients (45 men, 10 women; mean age 65 years) and 14 control IMA specimens (from 7 men and 7 women; mean age 45 years) were collected. IMA cross sections were assessed by histochemical and immunohistochemical staining methods to quantify the levels of medionecrosis, fibrosis, VSMC growth, ET-1, ETA, ETB, and macrophage infiltration. The percentage area of medionecrosis in the patients was almost double that in the controls (31.85+/-14.52% versus 17.10+/-9.96%, P=0.0006). Total and type 1 collagen was significantly increased compared with controls (65.8+/-18.3% versus 33.7+/-13.7%, P=0.07, and 14.2+/-10.0% versus 4.8+/-2.8%, P=0.01, respectively). Despite ACE and/or statin therapy, ET-1 expression and cell cycling were significantly elevated in the patient IMAs relative to the controls (46.27+/-18.46 versus 8.56+/-8.42, P=0.0001, and 37.29+/-12.88 versus 11.06+/-8.18, P=0.0001, respectively). ETA and ETB staining was elevated in the patient vessels (46.88+/-11.52% versus 18.58+/-7.65%, P=0.0001, and 42.98+/-7.08% versus 34.73+/-5.20%, P=0.0067, respectively). A mild presence of macrophages was noted in all sections. CONCLUSIONS: Elevated distribution of collagen indicative of fibrosis coupled with increased cell cycling and high levels of ET-1 and ETA expression in the absence of chronic inflammation suggests altered IMA VSMC regulation is fundamental to the remodeling process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the Sengstaken–Blakemore tube as a life-saving treatment for bleeding oesophageal varices is slowly becoming the least preferred method possibly due to the potential complications associated with its placement. Nursing practice pertaining to the care of this patient group appears ad hoc and reliant on local knowledge and experience as opposed to recognised evidence of best practice. Therefore, this paper focuses on the application of Lewin's transitional change theory used to introduce a change in nursing practice with the application of a guideline to enhance the care of patients with a Sengstaken–Blakemore tube in situ within a general intensive care unit. This method identified some of the complexities surrounding the change process including the driving and restraining forces that must be harnessed and minimised in order for the adoption of change to be successful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].