941 resultados para In-plane Shear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five full-scale timber floors were tested in order to analyse the in-plane behaviour of these structural systems. The main objective was an assessment of the effectiveness of in-plane strengthening using cross-laminated timber (CLT). To this end, one unstrengthened specimen (original), one specimen strengthened with a second layer of floorboards, two specimens strengthened with three CLT panels, and one specimen strengthened with two CLT panels, were tested. A numerical analysis was then performed in order to analyse the composite behaviour of the timber floors in more detail. Due to its importance as regards composite behaviour, the first phase of the experimental programme was composed of push-out tests on specimens representing the shear connection between the timber beams and the CLT panels. This paper describes the tests performed and the numerical modelling applied to evaluate the composite behaviour of the strengthened timber floors. The use of CLT panels is revealed to be an effective way to increase the in-plane stiffness of timber floors, through which the behaviour of the composite structure can be significantly changed, depending on the connection applied, or modified as required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small scale laboratory experiments, in which the specimen is considered to represent an element of soil in the soil mass, are essential to the evolution of fundamental theories of mechanical behaviour. In this thesis, plane strain and axisymmetric compression tests, performed on a fine sand, are reported and the results are compared with various theoretical predictions. A new apparatus is described in which cuboidal samples can be tested in either axisymmetric compression or plane strain. The plane strain condition is simulated either by rigid side platens, in the conventional manner, or by flexible side platens which also measure the intermediate principal stress. Close control of the initial porosity of the specimens is achieved by a vibratory method of sample preparation. The strength of sand is higher in plane strain than in axisymmetric compression, and the strains required to mobilize peak strength are much smaller. The difference between plane strain and axisymmetric compression behaviour is attributed to the restrictions on particle movement enforced by the plane strain condition; this results in an increase in the frictional component of shear strength. The stress conditions at failure in plane strain, including the intermediate principal stress, are accurately predicted by a theory based on the stress- dilatancy interpretation of Mohr's circles. Detailed observations of rupture modes are presented and measured rupture plane inclinations are predicted by the stress-dilatancy theory. Although good correlation with the stress-dilatancy theory is obtained during virgin loading, in both axisymmetric compression and plane strain, the stress-dilatancy rule is only obeyed during reloading if the specimen has been unloaded to approximate ambient stress conditions. The shape of the stress-strain curves during pre-peak deformation, in both plane strain and axisymmetric compression, is accurately described bv a combined parabolic-hyperbolic specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler-Bernoulli beams, are obtained by solving a transcendental. nonlinear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick-Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Epidermodysplasia verruciformis (EV) is a rare genodermatosis with susceptibility to human papillomavirus (HPV) infection, and high risk of skin cancer considered a model of viral oncogenesis. Methods: Fifteen cases of EV plane wart (PW)-type lesions (EV) and 14 cases of PW in healthy individuals were subjected to immunohistochemical technique for cytokeratins (K) 1, 10, 14, 16, 4, involucrin, filaggrin and e-cadherin. Results: K1/10 showed retarded or negative expression in EV, being substituted by K14. Expression of K14 occurred in the basal and suprabasal layers in both groups, but in EV, its expression was observed up to the more superficial layers. Both groups showed positivity for K16 and K4, involucrin expression in lower levels of the spinous layer and unaltered filaggrin expression. E-cadherin expression was diminished at the koilocytotic foci of both lesions, more superficially in EV. Conclusion: Infection by HPV may alter the differentiation status of the epidermis, leading to a major expression of K14, delayed or absent expression of K1/10 and earlier involucrin expression, especially in EV. It also stimulates the expression of K16 and K4. Filaggrin expression is not altered, and e-cadherin is diminished in superficial koilocytotic cells` foci in EV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements. © 2015Computer-Aided Civil and Infrastructure Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic investigations of typical south European masonry infilled frames were performed by testing two reduced scale specimens: one in the in-plane direction and another in the out-ofplane direction. Information about geometry and reinforcement scheme of those structures constructed in 1980s were obtained by [1]. The specimen to be tested in the in-plane direction was constructed as double leaf masonry while the specimen for testing in the out-of-plane direction is constructed with only its exterior leaf since the recent earthquakes have highlighted the vulnerability of the external leaf of the infills in out-of-plane direction [2]. The tests were performed by applying the pre-defined values of displacements in the in-plane and out-of-plane directions in the control points. For in-plane testing it was done by hydraulic actuator and for out-of-plane testing through the application of an airbag. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. Mid-point of the infill was assumed as a control point for outof- plane testing. Deformation and crack patterns of the infill confirm the formation of two-way arching mechanism of the masonry infill until collapse of the upper horizontal interface between infill and frame which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam. This results in the crack opening through a welldefined path and the consequent collapse of the infill.