973 resultados para In silico analysis of Candida albicans promoter sequences
Resumo:
Fungal pathogen Candida albicans causes serious nosocomial infections in patients, in part, due to formation of drug-resistant biofilms. Protein kinases (PK) and transcription factors (TF) mediate signal transduction and transcription of proteins involved in biofilm development. To discover biofilm-related PKs, a collection of 63 C. albicans PK mutants was screened twice independently with microtiter plate-based biofilm assay (XTT). Thirty-eight (60%) mutants showed different degrees of biofilm impairment with the poor biofilm formers additionally possessing filamentation defects. Most of these genes were already known to encode proteins associated with Candida morphology and biofilms but VPS15, PKH3, PGA43, IME2 and CEX1, were firstly associated with both processes in this study. Previous studies of Holcombe et al. (2010) had shown that bacterial pathogen, Pseudomonas aeruginosa can impair C. albicans filamentation and biofilm development. To investigate their interaction, the good biofilm former PK mutants of C. albicans were assessed for their response to P. aeruginosa supernatants derived from two strains, wildtype PAO1 and homoserine lactone (HSL)-free mutant ΔQS, without finding any nonresponsive mutants. This suggested that none of the PKs in this study was implicated in Candida-Pseudomonas signaling. To screen promoter sequences for overrepresented TFs across C. albicans gene sets significantly up/downregulated in presence of bacterial supernatants from Holcombe et al. (2010) study, TFbsST database was created online. The TFbsST database integrates experimentally verified TFs of Candida to analyse promoter sequences for TF binding sites. In silico studies predicted that Efg1p was overrepresented in C. albicans and C. parapsilosis RBT family genes.
Resumo:
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Resumo:
The availaibilty of chloroplast genome (cpDNA) sequences of Atropa belladonna, Nicotiana sylvestris, N tabacum, N tomentosiformis, Solanum bulbocastanum, S lycopersicum and S tuberosum, which are Solanaceae species, allowed us to analyze the organization of cpSSRs in their genic and intergenic regions In general, the number of cpSSRs in cpDNA ranged from 161 in S tuberosum to 226 in N tabacum, and the number of intergenic cpSSRs was higher than genic cpSSRs The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, penta- and hexanucleotide repeats Multiple alignments of all cpSSRs sequence from Solanaceae species made the identification of nucleotide variability possible and the phylogeny was estimated by maximum parsimony Our study showed that the plastome database can be exploited for phylogenetic analyses and biotechnological approaches
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Inflammatory papillary hyperplasia of the palate (IPHP) is a tissue-reactive overgrowth characterized by hyperemic mucosa with nodular or papillary appearance in the palate. The exact pathogenesis is still unclear. In this study, the presence of Candida albicans in the epithelial lining was evaluated using the indirect immunofluorescence staining technique. Strongly stained C albicans was observed only in the lesions of the IPHP group. Therefore, the detection of C albicans in almost all samples from IPHP tissue enabled a suggestion as to the microbial etiology of the disease, since the use of dental prostheses was reported. Int J Prosthodont 2011;24:235-237
Resumo:
The aim of this research was to evaluate the protein polymorphism degree among seventy-five C. albicans strains from healthy children oral cavities of five socioeconomic categories from eight schools (private and public) in Piracicaba city, São Paulo State, in order to identify C. albicans subspecies and their similarities in infantile population groups and to establish their possible dissemination route. Cell cultures were grown in YEPD medium, collected by centrifugation, and washed with cold saline solution. The whole-cell proteins were extracted by cell disruption, using glass beads and submitted to SDS-PAGE technique. After electrophoresis, the protein bands were stained with Coomassie-blue and analyzed by statistics package NTSYS-pc version 1.70 software. Similarity matrix and dendrogram were generated by using the Dice similarity coefficient and UPGMA algorithm, respectively, which made it possible to evaluate the similarity or intra-specific polymorphism degrees, based on whole-cell protein fingerprinting of C. albicans oral isolates. A total of 13 major phenons (clusters) were analyzed, according to their homogeneous (socioeconomic category and/or same school) and heterogeneous (distinct socioeconomic categories and/or schools) characteristics. Regarding to the social epidemiological aspect, the cluster composition showed higher similarities (0.788 < S D < 1.0) among C. albicans strains isolated from healthy children independent of their socioeconomic bases (high, medium, or low). Isolates of high similarity were not found in oral cavities from healthy children of social stratum A and D, B and D, or C and E. This may be explained by an absence of a dissemination route among these children. Geographically, some healthy children among identical and different schools (private and public) also are carriers of similar strains but such similarity was not found among other isolates from children from certain schools. These data may reflect a restricted dissemination route of these microorganisms in some groups of healthy scholars, which may be dependent of either socioeconomic categories or geographic site of each child. In contrast to the higher similarity, the lower similarity or higher polymorphism degree (0.499 < S D < 0.788) of protein profiles was shown in 23 (30.6%) C. albicans oral isolates. Considering the social epidemiological aspect, 42.1%, 41.7%, 26.6%, 23.5%, and 16.7% were isolates from children concerning to socioeconomic categories A, D, C, B, and E, respectively, and geographically, 63.6%, 50%, 33.3%, 33.3%, 30%, 25%, and 14.3% were isolates from children from schools LAE (Liceu Colégio Albert Einstein), MA (E.E.P.S.G. "Prof. Elias de Melo Ayres"), CS (E.E.P.G. "Prof. Carlos Sodero"), AV (Alphaville), HF (E.E.P.S.G. "Honorato Faustino), FMC (E.E.P.G. "Prof. Francisco Mariano da Costa"), and MEP (E.E.P.S.G. "Prof. Manasses Ephraim Pereira), respectively. Such results suggest a higher protein polymorphism degree among some strains isolated from healthy children independent of their socioeconomic strata or geographic sites. Complementary studies, involving healthy students and their families, teachers, servants, hygiene and nutritional habits must be done in order to establish the sources of such colonization patterns in population groups of healthy children. The whole-cell protein profile obtained by SDS-PAGE associated with computer-assisted numerical analysis may provide additional criteria for the taxonomic and epidemiological studies of C. albicans.
Resumo:
Le rôle important joué par la mitochondrie dans la cellule eucaryote est admis depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les processus biologiques qui sy déroulent restent encore largement inconnus. Deux facteurs principaux permettent dexpliquer pourquoi létude des mitochondries progresse si lentement : le manque defficacité des méthodes didentification des protéines mitochondriales et le manque de précision dans lannotation de ces protéines. En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui permet de prédire avec succès les protéines mitochondriales à partir des séquences génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme source dénergie et de carbone. De plus, nous avons étudié le composant clef de la voie de bêta-oxydation mitochondriale, lacyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la classification en sous-familles et linférence phylogénétique. Notre étude suggère que les gènes ACAD font partie dune ancienne famille qui a adopté des stratégies évolutionnaires innovatrices afin de générer un large ensemble denzymes susceptibles dutiliser la plupart des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de protéines mitochondriales à partir de données autres que les séquences génomiques, nous avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout autre outil de prédiction connu. En plus de fournir deux nouveaux outils de prédiction de la localisation subcellulaire utilisant différents types de données, nos travaux démontrent comment lassociation de la prédiction de la localisation subcellulaire à dautres méthodes danalyse in silico permet daméliorer la connaissance des protéines mitochondriales. De plus, ces travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui présente un grand potentiel pour faire progresser nos connaissances des métabolismes mitochondriaux.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
At present, little is known about signal transduction mechanisms in schistosomes, which cause the disease of schistosomiasis. The mitogen-activated protein kinase (MAPK) signaling pathways, which are evolutionarily conserved from yeast to Homo sapiens, play key roles in multiple cellular processes. Here, we reconstructed the hypothetical MAPK signaling pathways in Schistosoma japonicum and compared the schistosome pathways with those of model eukaryote species. We identified 60 homologous components in the S. japoncium MAPK signaling pathways. Among these, 27 were predicted to be full-length sequences. Phylogenetic analysis of these proteins confirmed the evolutionary conservation of the MAPK signaling pathways. Remarkably, we identified S. japonicum homologues of GTP-binding protein beta and alpha-I subunits in the yeast mating pathway, which might be involved in the regulation of different life stages and female sexual maturation processes as well in schistosomes. In addition, several pathway member genes, including ERK, JNK, Sja-DSP, MRAS and RAS, were determined through quantitative PCR analysis to be expressed in a stage-specific manner, with ERK, JNK and their inhibitor Sja-DSP markedly upregulated in adult female schistosomes. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
It has been reported that microRNAs (miRNA) may have allele-specific targeting for the 3` untranslated region (3` UTR) of the HLA-G locus. In a previous study, we reported 11 3`UTR haplotypes encompassing the 14-bp insertion/deletion polymorphism and seven SNPs (+3003 T/C, +3010 C/G, +3027 C/A, +3035 C/T, +3142 C/G, +3187A/G,and +3196 C/G), of which only the +3142 C/G SNP has been reported to influence the binding of miRNAs. Using bioinformatics analyses, we identified putative miRNA-binding sites considering the haplotypes encompassing these eight polymorphic sites, and we ranked the lowest free energies that could potentially lead to an mRNA degradation or translational repression. When a specific haplotype or a particular SNP was associated with a miRNA-binding site, we defined a free energy difference of 4 kcal/mol between alleles to classify them energetically distant. The best results were obtained for the miR-513a-5p, miR-518c*, miR-1262 and miR-92a-1*, miR-92a-2*, miR-661, miR-1224-5p, and miR-433 miRNAs, all influencing one or more of the +3003, +3010, +3027, and +3035 SNPs. The miR-2110, miR-93, miR-508-5p, miR-331-5p, miR-616, miR-513b, and miR-589* miRNAs targeted the 14-bp fragment region, and miR-148a, miR-19a*, miR-152, mir-148b,and miR-218-2 also influenced the +3142C/G polymorphism. These results suggest that these miRNAs might play a relevant role on the HLA-G expression pattern. (C) 2009 Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics.
Resumo:
To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.
Resumo:
Adherence is considered an extremely important virulence factor in yeast. Objective: The aim of this study was to analyze the adherence to epithelial cells of C. albicans isolated from patients with chronic periodontitis in comparison to healthy patients. Material and methods: Candida albicans cells isolated from individuals with chronic periodontitis (n=25) and healthy controls (n=25) were included in this study. Suspensions of C. albicans (10(6) cells/rnL) and epithelial cells (10(5) cells/mL) were mixed and incubated at 37 degrees C for 1 h. The number of yeasts adhered to 25 epithelial cells was counted. Results: The number of C. albicans cells adhered to epithelial cells was statistically higher in the chronic periodontitis group than in the control group (Student's t-test, p=0.000). Conclusion: The results of the present study suggest a higher Candida adherence of samples isolated from patients with chronic periodontitis.