994 resultados para Imputação de dados


Relevância:

100.00% 100.00%

Publicador:

Resumo:

efeitos são frequentemente observados na morbidade e mortalidade por doenças respiratórias e cardiovasculares, câncer de pulmão, diminuição da função respiratória, absenteísmo escolar e problemas relacionados com a gravidez. Estudos também sugerem que os grupos mais suscetíveis são as crianças e os idosos. Esta tese apresenta estudos sobre o efeito da poluição do ar na saúde na saúde na cidade do Rio de Janeiro e aborda aspectos metodológicos sobre a análise de dados e imputação de dados faltantes em séries temporais epidemiológicas. A análise de séries temporais foi usada para estimar o efeito da poluição do ar na mortalidade de pessoas idosas por câncer de pulmão com dados dos anos 2000 e 2001. Este estudo teve como objetivo avaliar se a poluição do ar está associada com antecipação de óbitos de pessoas que já fazem parte de uma população de risco. Outro estudo foi realizado para avaliar o efeito da poluição do ar no baixo peso ao nascer de nascimentos a termo. O desenho deste estudo foi o de corte transversal usando os dados disponíveis no ano de 2002. Em ambos os estudos foram estimados efeitos moderados da poluição do ar. Aspectos metodológicos dos estudos epidemiológicos da poluição do ar na saúde também são abordados na tese. Um método para imputação de dados faltantes é proposto e implementado numa biblioteca para o aplicativo R. A metodologia de imputação é avaliada e comparada com outros métodos frequentemente usados para imputação de séries temporais de concentrações de poluentes atmosféricos por meio de técnicas de simulação. O método proposto apresentou desempenho superior aos tradicionalmente utilizados. Também é realizada uma breve revisão da metodologia usada nos estudos de séries temporais sobre os efeitos da poluição do ar na saúde. Os tópicos abordados na revisão estão implementados numa biblioteca para a análise de dados de séries temporais epidemiológicas no aplicativo estatístico R. O uso da biblioteca é exemplificado com dados de internações hospitalares de crianças por doenças respiratórias no Rio de Janeiro. Os estudos de cunho metodológico foram desenvolvidos no âmbito do estudo multicêntrico para avaliação dos efeitos da poluição do ar na América Latina o Projeto ESCALA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante o processo de extração do conhecimento em bases de dados, alguns problemas podem ser encontrados como por exemplo, a ausência de determinada instância de um atributo. A ocorrência de tal problemática pode causar efeitos danosos nos resultados finais do processo, pois afeta diretamente a qualidade dos dados a ser submetido a um algoritmo de aprendizado de máquina. Na literatura, diversas propostas são apresentadas a fim de contornar tal dano, dentre eles está a de imputação de dados, a qual estima um valor plausível para substituir o ausente. Seguindo essa área de solução para o problema de valores ausentes, diversos trabalhos foram analisados e algumas observações foram realizadas como, a pouca utilização de bases sintéticas que simulem os principais mecanismos de ausência de dados e uma recente tendência a utilização de algoritmos bio-inspirados como tratamento do problema. Com base nesse cenário, esta dissertação apresenta um método de imputação de dados baseado em otimização por enxame de partículas, pouco explorado na área, e o aplica para o tratamento de bases sinteticamente geradas, as quais consideram os principais mecanismos de ausência de dados, MAR, MCAR e NMAR. Os resultados obtidos ao comprar diferentes configurações do método à outros dois conhecidos na área (KNNImpute e SVMImpute) são promissores para sua utilização na área de tratamento de valores ausentes uma vez que alcançou os melhores valores na maioria dos experimentos realizados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As análises biplot que utilizam os modelos de efeitos principais aditivos com inter- ação multiplicativa (AMMI) requerem matrizes de dados completas, mas, frequentemente os ensaios multiambientais apresentam dados faltantes. Nesta tese são propostas novas metodologias de imputação simples e múltipla que podem ser usadas para analisar da- dos desbalanceados em experimentos com interação genótipo por ambiente (G×E). A primeira, é uma nova extensão do método de validação cruzada por autovetor (Bro et al, 2008). A segunda, corresponde a um novo algoritmo não-paramétrico obtido por meio de modificações no método de imputação simples desenvolvido por Yan (2013). Também é incluído um estudo que considera sistemas de imputação recentemente relatados na literatura e os compara com o procedimento clássico recomendado para imputação em ensaios (G×E), ou seja, a combinação do algoritmo de Esperança-Maximização com os modelos AMMI ou EM-AMMI. Por último, são fornecidas generalizações da imputação simples descrita por Arciniegas-Alarcón et al. (2010) que mistura regressão com aproximação de posto inferior de uma matriz. Todas as metodologias têm como base a decomposição por valores singulares (DVS), portanto, são livres de pressuposições distribucionais ou estruturais. Para determinar o desempenho dos novos esquemas de imputação foram realizadas simulações baseadas em conjuntos de dados reais de diferentes espécies, com valores re- tirados aleatoriamente em diferentes porcentagens e a qualidade das imputações avaliada com distintas estatísticas. Concluiu-se que a DVS constitui uma ferramenta útil e flexível na construção de técnicas eficientes que contornem o problema de perda de informação em matrizes experimentais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present residual analysis techniques to assess the fit of correlated survival data by Accelerated Failure Time Models (AFTM) with random effects. We propose an imputation procedure for censored observations and consider three types of residuals to evaluate different model characteristics. We illustrate the proposal with the analysis of AFTM with random effects to a real data set involving times between failures of oil well equipment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dados faltantes são um problema comum em estudos epidemiológicos e, dependendo da forma como ocorrem, as estimativas dos parâmetros de interesse podem estar enviesadas. A literatura aponta algumas técnicas para se lidar com a questão, e, a imputação múltipla vem recebendo destaque nos últimos anos. Esta dissertação apresenta os resultados da utilização da imputação múltipla de dados no contexto do Estudo Pró-Saúde, um estudo longitudinal entre funcionários técnico-administrativos de uma universidade no Rio de Janeiro. No primeiro estudo, após simulação da ocorrência de dados faltantes, imputou-se a variável cor/raça das participantes, e aplicou-se um modelo de análise de sobrevivência previamente estabelecido, tendo como desfecho a história auto-relatada de miomas uterinos. Houve replicação do procedimento (100 vezes) para se determinar a distribuição dos coeficientes e erros-padrão das estimativas da variável de interesse. Apesar da natureza transversal dos dados aqui utilizados (informações da linha de base do Estudo Pró-Saúde, coletadas em 1999 e 2001), buscou-se resgatar a história do seguimento das participantes por meio de seus relatos, criando uma situação na qual a utilização do modelo de riscos proporcionais de Cox era possível. Nos cenários avaliados, a imputação demonstrou resultados satisfatórios, inclusive quando da avaliação de performance realizada. A técnica demonstrou um bom desempenho quando o mecanismo de ocorrência dos dados faltantes era do tipo MAR (Missing At Random) e o percentual de não-resposta era de 10%. Ao se imputar os dados e combinar as estimativas obtidas nos 10 bancos (m=10) gerados, o viés das estimativas era de 0,0011 para a categoria preta e 0,0015 para pardas, corroborando a eficiência da imputação neste cenário. Demais configurações também apresentaram resultados semelhantes. No segundo artigo, desenvolve-se um tutorial para aplicação da imputação múltipla em estudos epidemiológicos, que deverá facilitar a utilização da técnica por pesquisadores brasileiros ainda não familiarizados com o procedimento. São apresentados os passos básicos e decisões necessárias para se imputar um banco de dados, e um dos cenários utilizados no primeiro estudo é apresentado como exemplo de aplicação da técnica. Todas as análises foram conduzidas no programa estatístico R, versão 2.15 e os scripts utilizados são apresentados ao final do texto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As reformas propostas pelo modelo da Nova Gestão Pública tiveram repercussões importantes ao nível do setor da saúde, levando a que atualmente os prestadores de cuidados de saúde procurem aplicar a melhor prática clínica a um custo socialmente aceitável. A despesa do Estado com a Saúde é cerca de um quinto do total da despesa pública e, mais particularmente, a despesa com hospitais representa pouco menos de metade da despesa com saúde (pública e privada). O elevado peso dos gastos em saúde conduziu a alterações na gestão das unidades de saúde e a uma preocupação crescente com a gestão e tratamento contabilístico dos custos hospitalares. Nasce, assim, a necessidade de uma contabilidade virada para o interior da organização, que forneça informação adequada e atempada, destacando-se neste âmbito a Contabilidade de Custos. Torna-se pois importante que as organizações hospitalares ajustem a sua contabilidade às necessidades atuais, proporcionando uma sofisticada compreensão dos custos, e façam uso de modernas técnicas de imputação e controlo desses mesmos custos. Face ao exposto, o principal objetivo do trabalho é analisar a forma como são imputados os custos nos hospitais pertencentes ao Serviço Nacional de Saúde (SNS) e se existe uniformização nos critérios de imputação. Para tal, efetuamos uma investigação qualitativa através da realização de um estudo exploratório com recurso à Base de Dados de Elementos Analíticos (BDEA) do Ministério da Saúde e dos relatórios divulgados pelo sítio oficial do Ministério da Saúde Português. Observamos que, regra geral, os hospitais portugueses pertencentes ao SNS estão a seguir os requisitos normativos previstos no Plano de Contabilidade Analítica dos Hospitais (PCAH).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analisa o resultado das eleições federais, estaduais e municipais, realizadas no Brasil em 1952, 1954 e 1955, confrontando com dados estatísticos de eleições anteriores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consultoria de Orçamento e Fiscalização Financeira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consultoria Legislativa - Área XVI - Saúde Pública, Sanitarismo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consultoria Legislativa - Área XII - Recursos Minerais, Hídricos e Energéticos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descreve a proposição, a aplicação e a avaliação de um método de classificação temática em uma base de dados com discursos proferidos por deputados federais no plenário da Câmara dos Deputados da República Federativa do Brasil entre outubro de 2000 e outubro de 2002, indexada com auxílio de um vocabulário controlado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analisa os instrumentos de que dispõe os artigos 15 a 17 da Lei de Responsabilidade Fiscal no controle dos gastos públicos. Objetiva conhecer melhor a sistemática de conferência dos dados do Relatório de Gestão Fiscal - RGF, bem como do cumprimento das exigências dos artigos 16 e 17 da Lei de Responsabilidade Fiscal e aprimorar o trabalho executado no âmbito da Coordenação de Auditoria Contábil e Operacional da Secretaria de Controle Interno da Câmara dos Deputados.