936 resultados para Impulse Noise
Resumo:
The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.
Resumo:
Aktiivinen melunvaimennus (active noise control, ANC) onkauan tunnettu ja sovellettu tekniikka. Kuitenkaan sitä ei ole aiemmin sovellettu impulssimaiseen satunnaiseen meluun. Tässä diplomityössä tutkitaan aktiivisenmelunvaimennuksen soveltuvuutta ampumaradan melunvaimennukseen. Ampumarata äärimmäisenä tapauksena asettaa korkean vaatimustason laitteistolle ja sen komponenteille. Suurin haaste on etsiä sopivat laitteiston komponentit, jotka tuottavat ja kestävät suurta äänenpainetasoa. Myös muuttuvat sääolosuhteet asettavat vaatimuksensa laitteiden mekaaniselle kestävyydelle sekä säänkestävyydelle. Työssä paneuduttiin erityisesti selvittämään, mitä kaupallisesti saatavilla olevia komponentteja voidaan hyödyntää aktiiviseen impulssimelunvaimennusjärjestelmään. Kaupallisten komponenttien soveltuvuutta aktiiviseen impulssimelunvaimennukseen analysoitiin laboratorio- ja kenttämittauksin. Työssä esitetään myös tulokset yksinkertaisella koelaitteistolla saavutetusta vaimennuksesta kenttäolosuhteissa.
Resumo:
Ympäristömelu on nyky-yhteiskunnassa kasvava ongelma. Perinteisesti tätä melua on pyritty vähentämään passiivisen melunvaimennuksen avulla, kuten tienvarsien melumuureilla. Melua voidaan kuitenkin vaimentaa myös aktiivisellameluntorjunnalla (ANC, active noise control). Tässä työssä selvitetäänmitä ongelmia kohdataan, kun ANC-järjestelmää suunnitellaan ulkotiloihin ja mitä ominaisuuksia tällaiselta järjestelmältä vaaditaan. Työssä tutkitaan myös miten vaihtuvat ympäristöolosuhteet ja ulkoakustiset ilmiöt vaikuttavat ANC-järjestelmän toimintaan. Tutkimuksen pohjalta toteutetaan oma ANC-järjestelmä, jonka suorituskykyä työssä mitataan sekä komponentti- että järjestelmätasolla. Myös järjestelmän toimivuuteen vaikuttavia tekijöitä kartoitetaan mittausten avulla. Erikoistapauksena työssä selvitetään voiko suunnitellulla ANC-järjestelmällä vaimentaa impulssimaista melua paikallisesti.
Resumo:
The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.
Resumo:
From the customer satisfaction point of view, sound quality of any product has become one of the important factors these days. The primary objective of this research is to determine factors which affect the acceptability of impulse noise. Though the analysis is based on a sample impulse sound file of a Commercial printer, the results can be applied to other similar impulsive noise. It is assumed that impulsive noise can be tuned to meet the accepTable criteria. Thus it is necessary to find the most significant factors which can be controlled physically. This analysis is based on a single impulse. A sample impulsive sound file is tweaked for different amplitudes, background noise, attack time, release time and the spectral content. A two level factorial design of experiments (DOE) is applied to study the significant effects and interactions. For each impulse file modified as per the DOE, the magnitude of perceived annoyance is calculated from the objective metric developed recently at Michigan Technological University. This metric is based on psychoacoustic criteria such as loudness, sharpness, roughness and loudness based impulsiveness. Software called ‘Artemis V11.2’ developed by HEAD Acoustics is used to calculate these psychoacoustic terms. As a result of two level factorial analyses, a new objective model of perceived annoyance is developed in terms of above mentioned physical parameters such as amplitudes, background noise, impulse attack time, impulse release time and the spectral content. Also the effects of the significant individual factors as well as two level interactions are also studied. The results show that all the mentioned five factors affect annoyance level of an impulsive sound significantly. Thus annoyance level can be reduced under the criteria by optimizing the levels. Also, an additional analysis is done to study the effect of these five significant parameters on the individual psychoacoustic metrics.
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes.
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.
Resumo:
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America
Resumo:
Interference by siren background-noise with speech transmitted from radio equipment (3) of an emergency-service vehicle, is reduced by apparatus (1) that subtracts (43) an estimate nk of the correlated siren-noise component from the contaminated signal yk supplied by the cab-microphone (2). The estimate nk is computed by FIR (finite impulse response) filtering of a siren-reference signal xk supplied by a unit (4) from one or more microphones located on or near the siren, or from the electric waveform driving the siren. The filter-coefficients wk are adjusted according to an LMS (least mean square) adaptive algorithm that is applied to the correlated-noise component ek of the fed-back noise-reduced signal, so as to bring about iterative cancellation with close frequency-tracking, of the siren noise.
Resumo:
The Schroeder's backward integration method is the most used method to extract the decay curve of an acoustic impulse response and to calculate the reverberation time from this curve. In the literature the limits and the possible improvements of this method are widely discussed. In this work a new method is proposed for the evaluation of the energy decay curve. The new method has been implemented in a Matlab toolbox. Its performance has been tested versus the most accredited literature method. The values of EDT and reverberation time extracted from the energy decay curves calculated with both methods have been compared in terms of the values themselves and in terms of their statistical representativeness. The main case study consists of nine Italian historical theatres in which acoustical measurements were performed. The comparison of the two extraction methods has also been applied to a critical case, i.e. the structural impulse responses of some building elements. The comparison underlines that both methods return a comparable value of the T30. Decreasing the range of evaluation, they reveal increasing differences; in particular, the main differences are in the first part of the decay, where the EDT is evaluated. This is a consequence of the fact that the new method returns a “locally" defined energy decay curve, whereas the Schroeder's method accumulates energy from the tail to the beginning of the impulse response. Another characteristic of the new method for the energy decay extraction curve is its independence on the background noise estimation. Finally, a statistical analysis is performed on the T30 and EDT values calculated from the impulse responses measurements in the Italian historical theatres. The aim of this evaluation is to know whether a subset of measurements could be considered representative for a complete characterization of these opera houses.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.