946 resultados para Impairs Endocytosis
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.
Resumo:
The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.
Resumo:
Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.
Resumo:
CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.
Resumo:
Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.
Resumo:
Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
Introduction Sleep restriction and missing 1 night’s continuous positive air pressure (CPAP) treatment are scenarios faced by obstructive sleep apnoea (OSA) patients, who must then assess their own fitness to drive. This study aims to assess the impact of this on driving performance. Method 11 CPAP treated participants (50–75 yrs), drove an interactive car simulator under monotonous motorway conditions for 2 hours on 3 afternoons, following;(i)normal night’s sleep (average 8.2 h) with CPAP (ii) sleep restriction (5 h), with CPAP (iii)normal length of sleep, without CPAP. Driving incidents were noted if the car came out of the designated driving lane. EEG was recorded continually and KSS reported every 200 seconds. Results Driving incidents: Incidents were more prevalent following CPAP withdrawal during hour 1, demonstrating a significant condition time interaction [F(6,60) = 3.40, p = 0.006]. KSS: At the start of driving participants felt sleepiest following CPAP withdrawal, by the end of the task KSS levels were similar following CPAP withdrawal and sleep restriction, demonstrating a significant condition, time interaction [F(3.94,39.41) = 3.39, p = 0.018]. EEG: There was a non significant trend for combined alpha and theta activity to be highest throughout the drive following CPAP withdrawal. Discussion CPAP withdrawal impairs driving simulator performance sooner than restricting sleep to 5 h with CPAP. Participants had insight into this increased sleepiness reflected by the higher KSS reported following CPAP withdrawal. In the practical terms of driving any one incident could be fatal. The earlier impairment reported here demonstrates the potential danger of missing CPAP treatment and highlights the benefit of CPAP treatment even when sleep time is short.
Resumo:
Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.
Resumo:
Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma.
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl– channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 μg/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 μg/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.
Resumo:
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are a significant health concern, exacerbated by the rapid emergence of multidrug resistant strains refractory to antibiotic treatment. P fimbriae are strongly associated with upper urinary tract colonization due to specific binding to α-D-galactopyranosyl-(1-4)-β-D-galactopyranoside receptors in the kidneys. Thus, inhibiting P-fimbrial adhesion may reduce the incidence of UPEC-mediated UTI. E. coli 83972 is an asymptomatic bacteriuria isolate successfully used as a prophylactic agent to prevent UTI in human studies. We constructed a recombinant E. coli 83972 strain displaying a surface-located oligosaccharide P fimbriae receptor mimic that bound to P-fimbriated E. coli producing any of the 3 PapG adhesin variants. The recombinant strain, E. coli 83972:: lgtCE, impaired P fimbriae–mediated adhesion to human erythrocytes and kidney epithelial cells. Additionally, E. coli 83972::lgtCE impaired urine colonization by UPEC in a mouse UTI model, demonstrating its potential as a prophylactic agent to prevent UTI.