6 resultados para Imp2
Resumo:
Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.
Resumo:
SummaryCancer stem cells (CSC) are poorly differentiated, slowly proliferating cells, with high tumorigenic potential. Some of these cells, as it has been shown in leukemia, evade chemo- and radiotherapy and recapitulate the tumor composed of CSC and their highly proliferative progeny. Therefore, understanding the molecular biology of those cells is crucial for improvement of currently used anti-cancer therapies.This work is composed of two CSC-related projects. The first deals with CD44, a frequently used marker of CSC; the second involves Imp2 and its role in CSC bioenergetics. PART 1. CD44 is a multifunctional transmembrane protein involved in migration, homing, adhesion, proliferation and survival. It is overexpressed in many cancers and its levels are correlated with poor prognosis. CD44 is also highly expressed by CSC and in many malignancies it is used for CSC isolation.In the present work full-lenght CD44 nuclear localization was studied, including the mechanism of nuclear translocation and its functional role in the nucleus. Full-length CD44 can be found in nuclei of various cell types, regardless of their tumorigenic potential. For nuclear localization, CD44 needs to be first inserted into the cell membrane, from which it is transported via the endocytic pathway. Upon binding to transportinl it is translocated to the nucleus. The nuclear localization signal recognized by transportinl has been determined as the first 20 amino acids of the membrane proximal intracellular domain. Nuclear export of CD44 is facilitated by exportin Crml. Investigation of the function of nuclear CD44 revealed its implication in de novo RNA synthesis.PART 2. Glioblastoma multiforme is the most aggressive and most frequent brain malignancy. It was one of the first solid tumors from which CSC have been isolated. Based on the similarity between GBM CSC and normal stem cells expression of an oncofetal mRNA binding protein Imp2 has been investigated.Imp2 is absent in normal brain as well as in low grade gliomas, but is expressed in over 75% GBM cases and its expression is higher in CSC compared to their more differentiated counterparts. Analysis of mRNA transcripts bound by Imp2 and its protein interactors revealed that in GBM CSC Imp2 may be implicated in mitochondrial metabolism. Indeed, shRNA mediated silencing of protein expression led to decreased mitochondrial activity, decreased oxygen consumption and decreased activity of respiratory chain protein complex I. Moreover, lack of Imp2 severely affected self-renewal and tumorigenicity of GBM CSC. Experimental evidence suggest that GBM CSC depend on mitochondrial oxidative phosphorylation as an energy producing pathway and that Imp2 is a novel regulator of this pathway.RésuméLes cellules cancéreuses souches sont des cellules peu différentiées, à proliferation lente et hautement tumorigénique. Ces cellules sont radio-chimio résistantes et sont capable reformer la tumeur dans sont intégralité, reproduisant l'hétérogénéité cellulaire présent dans la tumeur d'origine. Pour améliorer les therapies antitumorales actuelles il est crucial de comprendre les mécanismes moléculaires qui caractérisent cette sous-population de cellules hautement malignes.Ce travail de thèse se compose de deux projets s'articulant autour du même axe :Le CD44 est une protéine multifonctionnelle et transmembranaire très souvent utilisée comme marqueur de cellules souches tumorales dans différents cancers. Elle est impliquée dans la migration, l'adhésion, la prolifération et la survie des cellules. Lors de ce travail de recherche, nous nous sommes intéressés à la localisation cellulaire du CD44, ainsi qu'aux mécanismes permettant sa translocation nucléaire. En effet, bien que principalement décrit comme un récepteur de surface transmembranaire, le CD44 sous sa forme entière, non clivée en peptides, peut également être observé à l'intérieur du noyau de diverses cellules, quel que soit leur potentiel tumorigénique. Pour passer ainsi d'un compartiment cellulaire à un autre, le CD44 doit d'abord être inséré dans la membrane plasmique, d'où il est transporté par endocytose jusqu'à l'intérieur du cytoplasme. La transportai permet ensuite la translocation nucléaire du CD44 via une « séquence signal » contenue dans les 20 acides aminés du domaine cytoplasmique qui bordent la membrane. A l'inverse, le CD44 est exporté du noyau grâce à l'exportin Crml. En plus des mécanismes décrits ci-dessus, cette étude a également mis en évidence l'implication du CD44 dans la synthèse des ARN, d'où sa présence dans le noyau.Le glioblastome est la plus maligne et la plus fréquente des tumeurs cérébrales. Dans ce second projet de recherche, le rôle de IMP2 dans les cellules souches tumorales de glioblastomes a été étudié. La présence de cette protéine oncofoetale a d'abord été mise en évidence dans 75% des cas les plus agressifs des gliomes (grade IV, appelés glioblastomes), tandis qu'elle n'est pas exprimée dans les grades I à III de ces tumeurs, ni dans le cerveau sain. De plus, IMP2 est apparue comme étant davantage exprimée dans les cellules souches tumorales que dans les cellules déjà différenciées. La baisse de l'expression de IMP2 au moyen de shRNA a résulté en une diminution de l'activité mitochondriale, en une réduction de la consommation d'oxygène ainsi qu'en une baisse de l'activité du complexe respiratoire I.L'inhibition de IMP2 a également affecté la capacité de renouvellement de la population des cellules souches tumorales ainsi que leur aptitude à former des tumeurs.Lors de ce travail de thèse, une nouvelle fonction d'un marqueur de cellules souches tumorales a été mise en évidence, ainsi qu'un lien important entre la bioénergétique de ces cellules et l'expression d'une protéine oncofoetale.
Resumo:
Glioblastoma multiforme (GBM) is the most frequent and lethal primary brain tumor in adults. Accumulating evidence suggests that tumors comprise a hierarchical organization that is, at least partially, not genetically driven. Cells that reside at the apex of this hierarchy are commonly referred to as cancer stem cells (CSCs) and are believed to largely contribute to recurrence and therapeutic failure. Although the complexity of epigenetic regulation of the genome precludes prediction as to which epigenetic changes dominate CSC specification in different cancer types, the ability of microRNAs (miRNAs) to fine-tune expression of entire gene networks places them among prime candidates for establishing CSC properties. In this study we characterized the miRNA expression profile of primary GBM grown either under conditions that enrich for GSCs or their differentiated non-tumorigenic progeny (DGCs). Although, we identified a subset of miRNAs that was strongly differentially expressed between GSCs and DGCs, we observed that in GSCs both let-7 and, paradoxically, their target genes are highly expressed, suggesting protection against let-7 action. Using PAR-CLIP we show that insulin-like growth factor-2 mRNA-binding protein 2 (IMP2) provides a mechanism for let-7 target gene protection that represents an alternative to LIN28A/B, which abrogates let-7 biogenesis in normal embryonic and certain malignant stem cells. By direct binding to miRNA recognition elements, IMP2 protects its targets from let-7 mediated decay. Importantly, depletion of IMP2 in GSCs strongly impairs their self- renewal properties and tumorigenicity in vivo, a phenotype that can be rescued by expression of LIN28B, suggesting that IMP2 mainly contributes to GSC maintenance by protecting let-7 target genes from silencing. Using mouse models, we show that depletion of IMP2 in neural stem cells (NSCs) induces let-7 target gene down-regulation, impairs their clonogenic capacity, and affects differentiation. Taken together, our observations describe a novel regulatory function of IMP2 in the let-7 axis whereby it supports GSC and NSC specification. Résumé (Français) Le glioblastome (GBM) est la tumeur primaire maligne du cerveau la plus fréquente. De nombreuses études ont démontré l'existence d'une organisation hiérarchique des cellules cancéreuses liée à des mécanismes épigénétiques. Les cellules qui se trouvent au sommet de cette hiérarchie sont appelées cellules souches cancéreuses (CSC), et contribuent à l'échec thérapeutique. Bien que la complexité des régulateurs épigénétiques permette difficilement de prédire quel mécanisme contribue le plus aux propriétés des CSC, la capacité des microRNAs (miRNAs) de réguler des réseaux entiers de gènes, les placent comme des candidats de premiers choix. Ici, nous avons caractérisé le profil d'expression des miRNAs dans des tumeurs primaires de GBM cultivées dans des conditions qui enrichissent soit pour les CSC, soit pour leur contrepartie de cellules cancéreuses différences (CCD). De manière surprenante et paradoxale la famille de miRNA let-7 et leurs gènes cibles étaient hautement exprimés dans les CSC, suggérant un mécanisme de protection contre l'action des let-7. Avec l'aide de la technologie PAR-CLIP, nous démontrons que la protéine IMP2, protège les mRNAs de l'action des let-7 et représente une alternative à Lin28A/B, qui d'ordinaire réprime fortement la maturation des let-7 dans les cellules souches embryonnaires et divers cancers. En se liant à la région ciblée par les let-7, IMP2 protège ses transcrits de l'action de cette classe de microRNA qui est tumoro-supressive. La déplétion d'IMP2 dans des CSC de GBM réduit fortement leur clonogénicité in vitro et leur tumorigénicité in vivo. Ceci peut être reversé en introduisant Lin28B dans des CSC de GBM, suggérant qu'IMP2 exerce ses fonctions pro-tumorigéniques en modulant l'axe let-7. Avec l'aide de modèles murins, nous observons que la déplétion de IMP2 dans les cellules souches neurales (CSN) induit une baisse de leur clonogénicité et des cibles des miRNAs let-7, suggérant une conservation de ce mécanisme entre les CSC de GBM et les CSN. En résumé, nos observations définissent une nouvelle fonction de IMP2 dans l'axe let-7 par lequel il contribue au maintien des propriétés des CSC et des CSN.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La bléomycine est un antibiotique cytotoxique, son potentiel génotoxique est plus important quand elle est utilisée en combinaison avec des agents antinéoplasiques sur le cancer testiculaire, que sur les autres types qui développent souvent une résistance envers la drogue. Notre but consiste alors de mettre en évidence ce mécanisme de résistance en utilisant l’organisme modèle Saccharomyces cerevisiae. Nous avons démontré au sein de notre laboratoire, que les levures délétées au niveau de leur coactivateur transcriptionnel Imp2, présentent une hypersensibilité à la bléomycine, en raison de son accumulation toxique dans la cellule. Ceci suggère que Imp2 pourrait réguler l’expression d’une ou de plusieurs pompes à efflux, capables d’expulser la bléomycine à l’extérieur de la cellule. Pour tester notre hypothèse, nous avons recherché des suppresseurs multicopies capables de restaurer la résistance à la bléomycine chez le mutant imp2, et c’est ainsi que nous avons identifié l'activateur transcriptionnel Yap1. Ce dernier se lie à une région spécifique localisée au niveau du promoteur et permet d’activer l'expression d'un sous-ensemble de gènes, codant pour des pompes à efflux, impliquées dans la résistance aux drogues. Selon la littérature, au moins 27 pompes à efflux ont été identifiées chez la levure Saccharomyces cerevisiae, certaines d’entre elles disposent du site de liaison pour Yap1, tels que Qdr3, Tpo2 et Tpo1. Afin de déterminer si une de ces pompes expulse la bléomycine, nous avons créé des mutations simples et doubles en combinaison avec IMP2, aussi nous avons verifié si les mutants étaient sensibles à la drogue et enfin, nous avons testé si la surexpression de Yap1 pouvait restaurer le phénotype sauvage chez ces mutants, via l’activation de pompes à efflux.