26 resultados para Immunotoxin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. Methods: Protein synthesis assay using (3)H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. Results: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. Conclusions: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical modification of proteins with polyethylene glycol (PEGylation) can increase plasma half-lives, stability, and therapeutic potency. To make a PEGylated recombinant immunotoxin with improved therapeutic properties, we prepared a mutant of anti-Tac(Fv)-PE38 (LMB-2), a recombinant immunotoxin composed of a single-chain Fv fragment of the anti-human Tac monoclonal antibody to the IL-2 receptor α subunit fused to a 38-kDa fragment of Pseudomonas exotoxin. For site-specific PEGylation of LMB-2, one cysteine residue was introduced into the peptide connector (ASGCGPE) between the Fv and the toxin. This mutant LMB-2 (cys1-LMB-2), which retained full cytotoxic activity, was then site-specifically conjugated with 5 or 20 kDa of polyethylene glycol-maleimide. When compared with unmodified LMB-2, both PEGylated immunotoxins showed similar cytotoxic activities in vitro but superior stability at 37°C in mouse serum, a 5- to 8-fold increase in plasma half-lives in mice, and a 3- to 4-fold increase in antitumor activity. This was accompanied by a substantial decrease in animal toxicity and immunogenicity. Site-specific PEGylation of recombinant immunotoxins may increase their therapeutic potency in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tagging of RNases, such as the ribotoxin α-sarcin, with the variable domains of antibodies directed to surface antigens that are selectively expressed on tumor cells endows cellular specificity to their cytotoxic action. A recombinant single-chain immunotoxin based on the ribotoxin α-sarcin (IMTXA33αS), produced in the generally regarded as safe (GRAS) yeast Pichia pastoris, has been recently described as a promising candidate for the treatment of colorectal cancer cells expressing the glycoprotein A33 (GPA33) antigen, due to its high specific and effective cytotoxic effect on in vitro assays against targeted cells. Here we report the in vivo antitumor effectiveness of this immunotoxin on nude mice bearing GPA33-positive human colon cancer xenografts. Two sets of independent assays were performed, including three experimental groups: control (PBS) and treatment with two different doses of immunotoxin (50 or 100 μg/ injection) (n = 8). Intraperitoneal administration of IMTXA33αS resulted in significant dose-dependent tumor growth inhibition. In addition, the remaining tumors excised from immunotoxin-treated mice showed absence of the GPA33 antigen and a clear inhibition of angiogenesis and proliferative capacity. No signs of immunotoxin-induced pathological changes were observed from specimens tissues.Overall these results show efficient and selective cytotoxic action on tumor xenografts, combined with the lack of severe side effects, suggesting that IMTXA33αS is a potential therapeutic agent against colorectal cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotoxins are chimeric proteins composed of an antibody domain that specifically directs the action of the toxic domain, resulting in the death of the targeted cells. Over recent years, immunotoxins have been widely studied and the number of different constructions has increased exponentially. Protein engineering has allowed the design of optimized versions of immunotoxins with an improved tumor binding affinity, stability or cytotoxic efficacy, although sometimes this has compromised the safety of the patient in terms of undesirable adverse secondary reactions. A triple mutant at three Trp residues (HtA3DW) of the ribotoxin hirsutellin A retains its specific ribonucleolytic activity, although cell internalization capacity is lacking.This toxin variant has been fused to the single chain variable fragment A33 (scFvA33). This immunoconjugate (IMTXA33HtA3DW) was produced in the methylotrophic yeast Pichia pastoris and purified using nickelnitrilotriacetic acid affinity chromatography. Both target and toxic domains were characterized. The immunotoxin showed an exquisite specific binding against GPA33-positive culture cells, which results in the death of the targeted cells because of specific ribonucleolytic activity against ribosomes of the engineered hirsutellin A variant. IMTXA33HtA3DW represents a promising structure in the search for an improved immunotoxin without compromising the safety of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrin is a type II ribosome-inactivating protein comprising of two subunits, A and B. Of the two, the A-subunit harbours the RNA-N-glycosidase activity and the B subunit is a galactose specific lectin that enables the entry of the protein inside the cell. Abrin inhibits protein synthesis and has been reported to induce apoptosis in several cell types. Based on these observations abrin is considered to have potential for the construction of immunotoxin in cell targeted therapy. Preliminary data from our laboratory however showed that although abrin inhibited the protein synthesis in all cell types, the mode of cell death varied. The aim of the present study was therefore to understand different death pathways induced by abrin in different cells. We used the human B cell line, U266B1 and compared it with the earlier studied T cell line Jurkat, for abrin-mediated inhibition of protein translation as well as cell death. While abrin triggered programmed apoptosis in Jurkat cells in a caspase-dependent manner, it induced programmed necrosis in U266B1 cells in a caspase-independent manner, even when there was reactive oxygen species production and loss of mitochondrial membrane potential. The data revealed that abrin-mediated necrosis involves lysosomal membrane permeabilization and release of cathepsins from the lysosomes. Importantly, the choice of abrin-mediated death pathway in the cells appears to depend on which of the two events occurs first: lysosomal membrane permeabilization or loss of mitochondrial membrane potential that decides cell death by necrosis or apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A interleucina 13 (IL-13) tem sido apontada como um dos principais mediadores em processos de ativação de fibroblastos e indução de fibrose pulmonar, sendo, portanto, considerada como um alvo terapêutico importante. A silicose é uma doença pulmonar inflamatória crônica, de caráter ocupacional, caracterizada por uma intensa resposta fibrótica e granulomatosa. Com base nestas observações, tivemos por objetivo investigar o potencial efeito da administração da imunotoxina IL-13-PE38QQR (IL-13PE) sobre o modelo de silicose em camundongos. Camundongos Swiss-Webster foram anestesiados e instilados intranasalmente com partículas de sílica (10 mg), sendo a administração da IL-13PE (200ng/dia) realizada por via intranasal, uma vez ao dia em dias alternados no período entre 21 a 27 dias após a provocação. Analisamos o componente inflamatório, a deposição de colágeno e a área de granuloma avaliados através de técnicas clássicas de histologia, incluindo coloração com H&E e Picrus-sirius, ou ainda a quantificação do conteúdo de colágeno por Sircol. Os componentes de matriz extracelular fibronectina e laminina foram avaliados através de imunohistoquímica. Citocinas e quimiocinas foram quantificadas por sistema de ELISA. As medidas de função pulmonar e resposta de hiperreatividade foram realizadas através do sistema de pletismografia de corpo inteiro invasiva. Verificamos que o tratamento curativo com a IL-13PE inibiu de forma acentuada o comprometimento da função pulmonar nos camundongos silicóticos, incluindo tanto aumento da resistência como da elastância, assim como a resposta de hiperratividade das vias aéreas ao agente broncoconstrictor metacolina. De forma coerente, os animais silicóticos quando submetidos ao tratamento com IL-13PE apresentaram marcada redução do componente inflamatório pulmonar e da resposta fibrótica, atestado pela diminuição na produção de colágeno, laminina e fibronectina e redução importante da área de granuloma. De forma semelhante, as citocinas (TNF-α e TGF-) e quimiocinas (MIP-1α, MIP-2, TARC, IP-10, MDC) detectadas em quantidade aumentada no pulmão de animais silicóticos foram reduzidas pelo tratamento com a IL-13PE. Em conclusão, nossos resultados mostram que a administração curativa da IL-13PE foi capaz de inibir os componentes inflamatórios e fibróticos da fase crônica do quadro silicótico em camundongos, o que se refletiu de forma clara na melhora da função pulmonar. Em conjunto, nossos achados indicam que a utilização da IL13PE parece constituir uma abordagem terapêutica extremamente promissora para aplicação em casos de doenças crônicas de natureza fibrótica como a silicose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins (MCs) are cyanobacterial toxins in water blooms that have received increasing attention as a public biohazard for human and animal health. Previous studies were mainly focused on the toxic effects on adult fish, rather than juvenile or larvae, and the response of fish immune system were usually neglected. This paper presents the first data of the effects of microcystin-LR (MC-LR) on transcription of several genes essential for early lymphoid development (Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha) and heat shock proteins (HSP90, HSP70, HSP60, HSP27) in zebrafish larvae. Relative changes of mRNA transcription were analyzed by real time PCR. The transcription of Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha were up-regulated when following exposure to 800 mu g/L MC-LR, which may indicate that specific lymphocytes differentiation and TCR/lg arrangement are induced to counteract the toxic effects of MC-LR. It was also interesting to note the dramatically increased transcription of HSP90. HSP70, HSP60 and HSP27, which may indicate their important roles as molecular chaperones under oxidative stress. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

白介素-4受体(IL-4R)在实体瘤和血癌等许多肿瘤细胞表面表达量很高构建导向IL-4R的免疫毒素,是研究肿瘤治疗的一个重要方向。天然IL-4分子N末端和C末端含有很多与受体结合的活性位点,为了降低连接蛋白毒素时对这些位点的影响,将天然IL-4分子的N端和c端用寡肚GGNGG相连,并在非活性部位形成新的开口,构建了cpIL-4;为了进一步提高cpIL-4与IL-4R的亲和力,通过重叠PCR引入13位点突变,得到cpIL-4(13D);为了增强IL-4免疫毒素对淋巴细胞的选择性,在121位引入点突变,得到cpIL-4(13D121E)。将上述三种重组IL-4分子分别于大肠杆菌表达系统进行表达。ELISA分析表明,三种重组蛋白均可与人IL-4抗体特异性结合。由于PE的DNA序列的GC含量很高,很难用常规手段进行改造,本文采用特殊条件的PCR反应和酶切反应进行绿脓杆菌外毒素PE的改造,得到PE38KDEL,并于大肠杆菌表达系统进行表达。其特点是分子量较小,不含结合区,C末端氨基酸KDEL有利于提高其跨膜能力和细胞毒作用。将靶向分子分别与毒素分子相连,得到三种免疫毒素:cpIL4-PE38KDEL,cpIL4(13D)-PE38KDEL,cpIL4(13D121B)-PE38KDEL。将之分别于表达载体pET32a(+)进行表达,目的蛋白表达量均约为菌体总蛋白的30%。western blotting分析表明,诱导后表达的三种IL-4免疫毒素均可与hIL-4抗体特异性结合。采用Ni-NTA亲和层析和阴离子交换层析纯化上述三种IL-4免疫毒素,纯度均在95%以上。用MTT法检测其细胞毒作用,结果显示,免疫毒素cpIL4(13D)-PE38KDEL可特异性地靶向产生IL-4R的细胞株,_且其活性与未突变的免疫毒素cpIIL4-PE38KDEL相比有2-3倍的提高;免疫毒素cpIL4(13D121E)-PE38KDEL对表达I型IL-4R的淋巴瘤细胞结合力较强,对表达II型IL-4R的内皮细胞结合力较弱,因此对淋巴瘤具有一定的选择性,这对于提高药物疗效,降低血管渗漏症等毒副作用具有重要意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以PCR技术从金黄色葡萄球菌基因组DNA中首次克隆编码成熟SECZ蛋白的全基因sec2。该基因共717bp,编码239个氨基酸,Genbank Accession number:AY450554。构建了SEC2的表达载体pET-28a-sec2,并在大肠杆菌BL21(DE3)中高效表达可溶性rSEC2蛋白。经亲和层析纯化,其纯度在95%以上,平均回收量为每升培养物40mg。纯化的rSEcZ保持了与野生型相当的生物学活性。以限制性核酸内切酶连接技术分别将两个抗人表皮生长因子受体HER-2单链抗体基因通过DNA Linker与sec2融合,构建融合基因b-l-sec2和ml小sec2,并以两种方式表达纯化。以pET-32a表达载体在E,coliAD494(DE3)中以氨基端融合大肠杆菌硫氧还蛋白(TrxA)形式高效表达融合蛋白TRX-B-L-SEC2和TRX-ML-L-SEC2,经亲和层析纯化,并以肠激酶切割得到成熟融合免疫毒素B-L-SEC2和ML-L-SEC2,其纯度在95%以上,平均回收量为每升培养物smg;以构建的新型表达载体pASK-75-EX在E.coliBL21(ED3)中以不溶性包涵体形式表达融合免疫毒素蛋白,经变性、纯化和复性后得到具有生物学活性的融合免疫毒素,其纯度在95%以上,平均回收量为每升培养物30mg。以两种方式制备的融合免疫毒素都保持了SECZ蛋白的免疫原性,都能有效刺激人外周血单个核细胞的增殖,并且都显示出在体外与HER-2过表达的乳腺癌细胞SK-Br-3特异性结合能力,具有显著的靶向性抑瘤作用。用PcR方法扩增了编码TrxA蛋白的基因trxA并克隆至表达载体pET-28a启动子上游,构建了一种在单质粒中利用两个相同的启动子游离共表达硫氧还蛋白与目的蛋白的表达载体。利用该载体可使TrxA与外源蛋白在大肠杆菌BL21(DE3)中以非融合形式高效共表达。共表达的TrxA可明显促进外源蛋白单链抗体ML3.9(scFv-ML)、3一轻基苯甲酸-6-单加氧酶(3HBA)的可溶性表达;并明显减少肠毒素C2(SEC2)、结核杆菌螺旋酶A亚基(GYRA)的包涵体表达。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of antibodies in chronic injury to organ transplants has been suggested for many years, but recently emphasized by new data. We have observed that when immunosuppressive potency decreases either by intentional weaning of maintenance agents or due to homeostatic repopulation after immune cell depletion, the threshold of B cell activation may be lowered. In human transplant recipients the result may be donor-specific antibody, C4d+ injury, and chronic rejection. This scenario has precise parallels in a rhesus monkey renal allograft model in which T cells are depleted with CD3 immunotoxin, or in a CD52-T cell transgenic mouse model using alemtuzumab to deplete T cells. Such animal models may be useful for the testing of therapeutic strategies to prevent DSA. We agree with others who suggest that weaning of immunosuppression may place transplant recipients at risk of chronic antibody-mediated rejection, and that strategies to prevent this scenario are needed if we are to improve long-term graft and patient outcomes in transplantation. We believe that animal models will play a crucial role in defining the pathophysiology of antibody-mediated rejection and in developing effective therapies to prevent graft injury. Two such animal models are described herein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.