991 resultados para Immune regulation
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
Host cell apoptosis plays an important immune regulatory role in parasitic infections. Infection of mice with Trypanosoma cruzi, the causative agent of Chagas disease, induces lymphocyte apoptosis. In addition, phagocytosis of apoptotic cells stimulates the growth of T. cruzi inside host macrophages. In spite of progress made in this area, the importance of apoptosis in the pathogenesis of Chagas disease remains unclear. Here we review the evidence of apoptosis in mice and humans infected with T. cruzi. We also discuss the mechanisms by which apoptosis can influence underlying host responses and tissue damage during Chagas disease progression.
Resumo:
Dietary and microbial factors are thought to contribute to the rapidly increasing prevalence of T1D in many countries worldwide. The impact of these factors on immune regulation and diabetes development in non-obese diabetic (NOD) mice are investigated in this thesis. Diabetes can be prevented in NOD mice through dietary manipulation. Diet affects the composition of intestinal microbiota, which may subsequently influence intestinal immune homeostasis. However, the specific effects of anti-diabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. The research presented herein demonstrates that newly weaned NOD mice suffer from a mild level of colitis, which shifts the colonic immune cell balance towards a proinflammatory status. Several aberrations can also be observed in the peritoneal B cells of NOD mice; an increase in activation marker expression, increased trafficking to the pancreatic lymph nodes and significantly higher antigen presenting cell (APC) efficiency towards insulin-specific T cells. A shift towards inflammation is likewise observed in the colon of germ-free NOD mice, but signs of peritoneal B cell activation are lacking in these mice. Remarkably, most of the abnormalities in the colon, peritoneal macrophages and the peritoneal B cell APC activity of NOD mice are abrogated when NOD mice are maintained on a diabetes-preventive, soy-based diet (ProSobee) from the time of weaning. Dietary and microbial factors hence have a significant impact on colonic immune regulation and peritoneal B cell activation and it is suggested that these factors influence diabetes development in NOD mice.
Resumo:
CYLD is a deubiquitinating enzyme, which negatively regulates NF-κB signaling by removing Lys63-linked polyubiquitin chains from its substrates. In mice, there are two variants of CYLD: full-length CYLD (FL-CYLD) and its short splice variant sCYLD. sCYLD lacks the NEMO and TRAF2 binding sites and CYLDex7/8 mice, which have been generated in our laboratory, overexpress sCYLD in the absence of the full length transcript. In this thesis, we show that bone marrow-derived macrophages (BMDCs) overexpressing sCYLD display a hyperactive phenotype. They have increased levels of the inflammatory cytokines IL-6 and TNFα, have exaggerated stimulatory capacity and fail to induce tolerance in in vivo experiments. CYLDex7/8 BMDCs have increased levels of nuclear Bcl-3, which we could show to be directly induced by sCYLD expression. NF-κB signaling was markedly upregulated in CYLDex7/8 BMDCs.rnBcl-3 overexpressing BMDCs with normal CYLD expression, however, were not hyperactive, suggesting that Bcl-3 overexpression is not sufficient for causing the observed phenotype. Taken together we propose a model in which the exclusive overexpression of sCYLD with high nuclear levels of Bcl-3 in BMDCs is accompanied by an increased NF-κB activation, resulting in a hyperactive phenotype.rnWe further analyzed macrophages overexpressing sCYLD using the LysMcre CyldFL/FL strain, but could not detect differences in activation marker expression, cytokine secretion or iNOS production. LysMcre CyldFL/FL mice immunized with MOG35-55 peptide showed a more severe course of experimental autoimmune encephalomyelitis (EAE), which could not be explained by enhanced levels of MHC class II on CNS-resident macrophages and microglia or increased T cell infiltration.rnMice overexpressing Bcl-3 in T cells develop spontaneous colitis. They have less peripheral memory/effector T cells and less Th1 cells, whereas Th17 numbers are normal. Naïve T cells overexpressing Bcl-3 show defects in in vitro differentiation to the Th1 or Th17 fate. CD4+ T cells overexpressing Bcl-3 show enhanced survival capacity in in vitro culture, but have a defect in proliferative capacity when stimulated in vitro or when adoptively transferred into lymphopenic hosts.
Resumo:
The immune system evolved to protect organisms from an infinite variety of disease-causing agents but to avoid harmful responses to self. However, such a powerf~dl efense mechanism requires regulation. Immune regulation includes homeostatic and cellmediated targeted mechanisms to the activation, differentiation and function of antigen-triggered immuno-competent cells and irnmunoregulatory cells. The regulation of the immune system has been a major challenge for the management of autoimmune disorders, tumor immunity, infectious diseases and organ transplants. However, irnmuno-modulatory procedures used by modern medicine to induce immunoregulatory function have deleterious side effects. Ashwangandha (Withania somnifera), an herb used in Ayurvedic medicine is being tested and used in experimental and clinical cases with potential immuno-modulatory functions without any side effects. Here we propose future usages of Ashwangandha for immuno-regulatory function in translational research.
Resumo:
The ST6Gal sialyltransferase controls production of the Siaα2-6Galβ1-4GlcNAc (Sia6LacNAc) trisaccharide, which is the ligand for the lectin CD22. Binding of CD22 to Sia6LacNAc is implicated in regulating lymphocyte adhesion and activation. We have investigated mice that lack ST6Gal and report that they are viable, yet exhibit hallmarks of severe immunosuppression unlike CD22-deficient mice. Notably, Sia6LacNAc-deficient mice display reduced serum IgM levels, impaired B cell proliferation in response to IgM and CD40 crosslinking, and attenuated antibody production to T-independent and T-dependent antigens. Deficiency of ST6Gal was further found to alter phosphotyrosine accumulation during signal transduction from the B lymphocyte antigen receptor. These studies reveal that the ST6Gal sialyltransferase and corresponding production of the Sia6LacNAc oligosaccharide are essential in promoting B lymphocyte activation and immune function.
Resumo:
After initial infection, human cytomegalovirus remains in a persistent state with the host. Immunity against the virus controls replication, although intermitent viral shedding can still take place in the seropositive immunocompetent person. Replication of cytomegalovirus in the absence of an effective immune response is central to the pathogenesis of disease. Therefore, complications are primarily seen in individuals whose immune system is immature, or is suppressed by drug treatment or coinfection with other pathogens. Although our increasing knowledge of the host-virus relationship has lead to the development of new pharmacological strategies for cytomegalovirus-associated infections, these strategies all have limitations-eg, drug toxicities, development of resistance, poor oral bioavailability, and low potency. Immune-based therapies to complement pharmacological strategies for the successful treatment of virus-associated complications should be prospectively investigated.
Resumo:
Background: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. Methods: Piglets were nursed by their mother on a commercial farm, while isolatorreared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. Results: There was more CD4+ and CD4+CD25+ effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4+CD25+Foxp3+ regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. Conclusion: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.
Resumo:
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.
Resumo:
The production and regulation of interleukin (IL) IL-13, IL-4 and interferon-gamma was evaluated in different clinical forms of human schistosomiasis. The mechanisms of immune regulation are apparently different in the various clinical stages of the disease, some of them being antigen specific.
Resumo:
Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict.
Resumo:
Coordinated function of the innate and adaptive arms of the immune system in vertebrates is essential to promote protective immunity and to avoid immunopathology. The Notch signalling pathway, which was originally identified as a pleiotropic mediator of cell fate in invertebrates, has recently emerged as an important regulator of immune cell development and function. Notch was initially shown to be a key determinant of cell-lineage commitment in developing lymphocytes, but it is now known to control the homeostasis of several innate cell populations. Moreover, the roles of Notch in adaptive immunity have expanded to include the regulation of T cell differentiation and function. The aim of this Review is to summarize the current status of immune regulation by Notch. A better understanding of Notch function in both innate and adaptive immunity will hopefully provide multiple avenues for therapeutic intervention in disease.
Resumo:
Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.