998 resultados para Immune complexes
Resumo:
The presence of circulating immune complexes formed by IgM and IgG (CIC-IgM and CIC-IgG) was investigated, using antigen-specific enzyme-immunoassays (ELISA), in 30 patients with acute Chagas' disease who showed parasitemia and inoculation chagoma. Control population consisted of patients with chronic T. cruzi infection (30), acute toxoplasmosis 10), leishmaniasis (8), rheumatoid arthritis (3) and healthy individuals with negative serology for Chagas* disease (30). Acute chagasic patients were 100% CIC-IgG and 96.66% CIC-IgM positive whereas immunofluorescence tests yielded 90% and 86.66% of positivity for specific IgG and IgM antibodies, respectively. Chronic patients were 68% CIC-IgG and 0% CIC-IgM positive. The 30 negative and the 21 cross-reaction controls proved negative for ELISA (CIC-IgM and CIC-IgG). The high sensitivity of ELISA assays would allow early immunologic diagnosis, as well as prompt treatment, of acute T. cruzi infection, thus eliminating the problem of the false-positive and false-negative results which affects traditional methods for detection of circulating antibodies.
Resumo:
Considering the scarcity of defined antigens, actually useful and reliable for use in the field studies, we propose an alternative method for selection of cDNA clones with potential use in the diagnosis of schistosomiasis. Human antibodies specific to a protein fraction of 31/32 kDa (Sm31/32), dissociated from immune complexes, are used for screening of clones from an adult worm cDNA library. Partial sequencing of five clones, selected through this strategy, showed to be related to Schistosoma mansoni: two were identified as homologous to heat shock protein 70, one to glutathione S-transferase, one to homeodomain protein, and one to a previously described EST (expressed sequence tag) of S. mansoni. This last clone was the most consistently reactive during the screening process with the anti-Sm31/32 antibodies dissociated from the immune complexes. The complete sequence of this clone was obtained and the translation data yielded only one ORF (open reading frame) that code for a protein with 57 amino acids. Based on this amino acid sequence two peptides were chemically synthesized and evaluated separately against a pool of serum samples from schistosomiasis patients and non-schistosomiasis individuals. Both peptides showed strong reactivity only against the positive pool, suggesting that these peptides may be useful as antigens for the diagnosis of schistosomiasis mansoni.
Resumo:
This paper reports an unusual pattern of serological HBV markers and the presence of HBsAg/anti-HBs immune complexes in serum samples from two patients with fulminant hepatitis from the Brazilian Western Amazon Basin. The diagnosis was made by both serologic tests and demonstration of antigen/antibody complexes by transmission electron microscopy. Concurrent Delta virus superinfection is also discussed.
Resumo:
The STEP HIV vaccine trial, which evaluated a replication-defective adenovirus type 5 (Ad5) vector vaccine, was recently stopped. The reasons for this included lack of efficacy of the vaccine and a twofold increase in the incidence of HIV acquisition among vaccinated recipients with increased Ad5-neutralizing antibody titers compared with placebo recipients. To model the events that might be occurring in vivo, the effect on dendritic cells (DCs) of Ad5 vector alone or treated with neutralizing antiserum (Ad5 immune complexes [IC]) was compared. Ad5 IC induced more notable DC maturation, as indicated by increased CD86 expression, decreased endocytosis, and production of tumor necrosis factor and type I interferons. We found that DC stimulation by Ad5 IC was mediated by the Fcgamma receptor IIa and Toll-like receptor 9 interactions. DCs treated with Ad5 IC also induced significantly higher stimulation of Ad5-specific CD8 T cells equipped with cytolytic machinery. In contrast to Ad5 vectors alone, Ad5 IC caused significantly enhanced HIV infection in DC-T cell cocultures. The present results indicate that Ad5 IC activates a DC-T cell axis that, together with the possible persistence of the Ad5 vaccine in seropositive individuals, may set up a permissive environment for HIV-1 infection, which could account for the increased acquisition of HIV-1 infection among Ad5 seropositive vaccine recipients.
Resumo:
Schistosomiasis is a disease whose pathology is strongly related to the granulomatous reaction formed around parasite eggs trapped in host tissues. Studies have shown that the chronic intestinal form (INT) of this infection is associated with a variety of immunoregulatory mechanisms which lead to a diminished granulomatous reaction. Using an in vitro model of granuloma reaction, we show that immune complexes (IC) isolated from sera of INT patients are able to reduce granulomatous reaction developed by peripheral blood mononuclear cells (PBMC) from acute (AC), INT and hepatosplenic (HE) patients to soluble egg antigen (SEA)-conjugated polyacrylamide beads (PB-SEA). This inhibitory activity is also observed in cell proliferation assay of PBMC from INT and HE patients stimulated with SEA and adult worm antigen (SWAP). Furthermore, IC isolated from sera of patients with different clinical forms of the disease are also able to suppress INT patients PBMC reactivity. Therefore, our results show that circulating IC present in sera of patients with different clinical forms of schistosomiasis may down-regulate PBMC reactivity to parasite antigens resulting in a diminished granuloma reaction to parasite eggs
Resumo:
CEA as well as normal cross-reacting antigens (NCA) are fixed to the cell membrane via phosphatidylinositol (PI). To find out whether these antigens are internalized after antibody contact, acid pH desorption was compared to phospholipase C (PLC)-mediated cleavage of the antigen anchor. With the former procedure, marked differences in the desorbability of individual MAbs were noted, while PLC was able to cleave off surface-bound immune complexes irrespective of the MAb involved. From this it is concluded that internalization of MAb complexes of CEA/NCA, if occurring at all, is a low efficiency process.
Resumo:
BACKGROUND: Autoimmune diseases with elevated circulating autoantibodies drive tissue damage and the onset of disease. The Fcγ receptors bind IgG subtypes modulating the clearance of circulating immune complexes (CIC). The inner ear damage in Ménière's disease (MD) could be mediated by an immune response driven by CIC. We examined single-nucleotide polymorphism (SNPs) in the CD16A and CD32 genes in patients with MD which may determine a Fcγ receptor with lower binding to CIC. METHODS: The functional CD16A (FcγRIIIa*559A > C, rs396991) and CD32A (FcγRIIa*519A > G, rs1801274) SNPs were analyzed using PCR-based TaqMan Genotyping Assay in two cohorts of 156 mediterranean and 112 Galicia patients in a case-control study. Data were analyzed by χ2 with Fisher's exact test and Cochran-Armitage trend test (CATT). CIC were measured by ELISA for C1q-binding CIC. RESULTS: Elevated CIC were found in 7% of patients with MD during the intercrisis period. No differences were found in the allelic frequency for rs396991 or rs1801274 in controls subjects when they were compared with patients with MD from the same geographic area. However, the frequency of AA and AC genotypes of CD16A (rs396991) differed among mediterranean and Galicia controls (Fisher's test, corrected p = 6.9 × 10-4 for AA; corrected p = 0.02 for AC). Although genotype AC of the CD16A receptor was significantly more frequent in mediterranean controls than in patients, [Fisher's test corrected p = 0.02; OR = 0.63 (0.44-0.91)], a genetic additive effect for the allele C was not observed (CATT, p = 0.23). Moreover, no differences were found in genotype frequencies for rs396991 between patients with MD and controls from Galicia (CATT, p = 0.14). The allelic frequency of CD32 (rs1801274) was not different between patients and controls either in mediterranean (p = 0.51) or Galicia population (p = 0.11). CONCLUSIONS: Elevated CIC are not found in most of patients with MD. Functional polymorphisms of CD16A and CD32 genes are not associated with onset of MD.
Resumo:
RÉSUMÉ Les plaques de Peyer (PP) représentent le site d'entrée majeur des pathogènes au niveau des muqueuses intestinales. Après avoir traversé la cellule M, l'antigène est pris en charge par les cellules dendritiques (DC) de la région sub-épithéliale du dôme des PP. Ces dernières activent une réponse immunitaire qui conduit à la production de l'IgA de sécrétion (SIgA), l'anticorps majeur au niveau muqueux. Des études précédentes dans notre laboratoire ont démontré qu'après administration de SIgA dans des anses intestinales de souris, les SIgA se lient spécifiquement aux cellules M, entrent dans les PP, et sont éventuellement internalisées par les DC. Le but de ce travail est de comprendre la relevance biologique de l'entrée des SIgA dans les PP et leur relevance physiologique dans l'homéostasie mucosale. Dans un premier temps, nous avons montré en utilisant une méthode de purification optimisée basée sur une isolation magnétique, que, en plus des DC myéloïdes (CD11c+/CD11b+) et des DC lymphoïdes (CD11c+/CD8+), les PP de souris contiennent un nouveau sous-type de DC exprimant les marqueurs CD11c et CD19. L'utilisation de la microscopie confocale nous a permis de démontrer que les DC myéloïdes internalisent des SIgA, contrairement aux DC lymphoïdes qui n'interagissent pas avec les SIgA, alors que le nouveau sous-type de DC exprimant CD19 lie les SIgA. En plus, nous avons démontré qu'aucune des DC de rate, de ganglion bronchique ou de ganglion inguinal interagit avec les SIgA. Dans le but d'explorer si les SIgA peuvent délivrer des antigènes aux DC des PP in vivo, nous avons administré des complexes immunitaires formés de Shigella flexneri complexées à des SIgA, dans des anses intestinales de souris. Nous avons observé une entrée dans les PP, suivie d'une migration vers les ganglions mésentériques drainants, contrairement aux Shigella flexneri seules, qui n'infectent pas la souris par la voie intestinale. Shigella flexneri délivrée par SIgA n'induit pas de destruction tissulaire au niveau de l'intestin. En plus de l'exclusion immunitaire, ces résultats suggèrent un nouveau rôle des SIgA, qui consiste à transporter des antigènes à l'intérieur des PP dans un contexte non-inflammatoire. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC L'intestin a pour rôle principal d'absorber les nutriments digérés tout au long du tube digestif, et de les faire passer dans le compartiment intérieur sanguin. Du fait de son exposition chronique avec un monde extérieur constitué d'aliments et de bactéries, l'intestin est un endroit susceptible aux infections et a donc besoin d'empêcher l'entrée de microbes. Pour cela, l'intestin est tapissé de "casernes" appelées les plaques de Peyer, qui appartiennent à un système de défense appelé système immunitaire muqueux. Les plaques de Peyer sont composées de différents types de cellules, ayant pour rôle de contrôler l'entrée de microbes et de développer une réaction immunitaire lors d'infection. Cette réaction immunitaire contre les microbes (antigènes) débute par la prise en charge de l'antigène par des sentinelles, les cellules dendritiques. L'antigène est préparé de façon à être reconnu par d'autres cellules appelées lymphocytes T capables d'activer d'autres cellules, les lymphocytes B. La réaction immunitaire résulte dans la production par les lymphocytes B d'un anticorps spécifique appelé IgA de sécrétion (SIgA) au niveau de la lumière intestinale. De manière classique, le rôle de SIgA au niveau de la lumière intestinale consiste à enrober les microbes et donc exclure leur entrée dans le compartiment intérieur. Dans ce travail, nous avons découvert une nouvelle fonction des SIgA qui consiste à introduire des antigènes dans les plaques de Peyer, et de les diriger vers les cellules dendritiques. Sachant que les SIgA sont des anticorps qui ne déclenchent pas de réactions de défense violentes dites inflammatoires, l'entrée des antigènes via SIgA serait en faveur d'une défense intestinale maîtrisée sans qu'il y ait d'inflammation délétère. Ces résultats nous laissent supposer que l'entrée d'antigènes via SIgA pourrait conduire le système immunitaire muqueux à reconnaître ces antigènes de manière appropriée. Ce mécanisme pourrait expliquer les désordres immunitaires de types allergiques et maladies auto-immunitaires que l'on rencontre chez certaines personnes déficientes en IgA, chez qui cette lecture d'antigènes de manière correcte serait inadéquate. ABSTRACT Peyer's patches (PP) represent the primary site for uptake and presentation of ingested antigens in the intestine. Antigens are sampled by M cells, which pass them to underlying antigen-presenting cells including dendritic cells (DC). This leads to the induction of mucosal T cell response that is important for the production of secretory IgA (SIgA), the chief antibody at mucosal surfaces. Previous studies in the laboratory have shown that exogenous SIgA administrated into mouse intestinal loop binds specifically to M cells, enter into PP, and is eventually internalized by DC. The aim of this work is to understand the biological significance of the SIgA uptake by PP DC and its physiological relevance for mucosal homeostasis. As a first step, we have shown by using an optimized MACS method that, in addition to the CD11c+/CD11b+ (myeloid DC) and CD11c+/CD8+ (lymphoid DC) subtypes, mouse PP contain a novel DC subtype exhibiting both CD11c and CD19 markers. By using a combination of MACS isolation and confocal microscopy, we have demonstrated that in contrast to the lymphoid DC which do not interact with SIgA, the myeloid DC internalize SIgA, while the CD19+ subtype binds SIgA on its surface. Neither spleen DC, nor bronchial-lymph node DC, nor inguinal lymph node DC exhibit such a binding specificity. To test whether SIgA could deliver antigens to PP DC in vivo, we administered SIgA-Shigella flexneri immune complexes into mouse intestinal loop containing a PP. We found that (i) SIgA-Shigella flexneri immune complexes enter the PP and are internalized by sub-epithelial dome PP DC, in contrast to Shigella flexneri alone that does not penetrate the intestinal epithelia in mice, (ii) immune complexes migrate to the draining mesenteric lymph node, (iii) Shigella flexneri carried via SIgA do not induce intestinal tissue destruction. Our results suggest that in addition to immune exclusion, SIgA transports antigens back to the PP under non-inflammatory conditions.
Resumo:
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.
Resumo:
We report that immune complexes of IgM (ICIgM) antibodies and ovalbumin in the form of a precipitate from the equivalence zone induce the generation of reactive oxygen species by rabbit blood polymorphonuclear leucocytes (PMN), as measured by the chemiluminescence (CL) production in the presence of luminol. The kinetics of CL generation induced by ICIgM is quite different from that induced by precipitated immune complexes of IgG (ICIgG): the maximum rate of CL production for ICIgM occurs around 14 min, whereas for ICIgG it occurs about 5 min after incubation with the cells. Also the triggering of the process requires a higher concentration of ICIgM than of ICIgG. Evidence is presented that these effects are not mediated by interaction of the antigen (ovalbumin) with the cell, since immune precipitates of ovalbumin and the F(ab')2 fragment had no effect. Our observations that precipitated ICIgM can also be an effective stimulus for CL generation and thus for O2- production reveal a new functional capability of PMN. These results may have implications for the understanding of the participation of ICIgM (as well as of ICIgG) in inflammatory reactions mediated by PMN in immune complex diseases, and in the mechanisms of defense against microbes and other non-self agents.
Resumo:
The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMN) can be induced by immune complexes and is an important component of phagocytosis in the killing of microorganisms, but can also be involved in inflammatory reactions when immune complexes are deposited in tissues. We have observed that fluid-phase IgG can inhibit the generation of ROS by rabbit PMN stimulated with precipitated immune complexes of IgG (ICIgG) in a dose-dependent manner, acting as a modulatory factor in the range of physiological IgG concentrations. This inhibitory effect is compatible with the known affinity (Kd) of monomeric IgG for the receptors involved (FcRII and FcRIII). The presence of complement components in the immune complexes results in a higher stimulation of ROS production. In this case, however, there is no inhibition by fluid-phase IgG. The effect of complement is strongly dependent on the presence of divalent cations (Ca2+ or Mg2+) in the medium, whereas the stimulation of ICIgG (without complement) does not depend on these cations. We have obtained some evidence indicating that iC3b should be the component involved in the effect of complement through interaction with the CR3 receptor. The absence of the inhibitory effect of fluid-phase IgG in ROS production when complement is present in the immune complex shows that complement may be important in vivo not only in the production of chemotactic factors for PMN, but also in the next phase of the process, i.e., the generation of ROS.
Resumo:
Circulating immune complexes (CIC) from 15 paracoccidioidomycosis (PCM) patient sera and from 20 healthy control sera were analysed. After CIC precipitation, solubilization and acid treatment, only a little reactivity to P. brasiliensis antigens was found in the free antibodies from PCM-CIC. This result has suggested that there were antibodies with a high affinity bound to fungus components. Dissociated CIC were fractionated in a column of Sephacryl S300 and the fractions that probably contained antigens were pooled and applied to an affinity column, prepared with mouse anti-gp43 monoclonal antibody. Using ECL-Western blotting assay two polypeptide with apparent mass of 43 and 62 kDa were found.
Resumo:
Context and objective: The massive production of reactive oxygen species by neutrophils during inflammation may cause damage to tissues. Flavonoids act as antioxidants and have anti-inflammatory effects. In this study, liposomes loaded with these compounds were evaluated as potential antioxidant carriers, in attempt to overcome their poor solubility and stability. Materials and methods: Liposomes containing quercetin, myricetin, kaempferol or galangin were prepared by the ethanol injection method and analyzed as inhibitors of immune complex (IC) and phorbol ester-stimulated neutrophil oxidative metabolism by luminol (CLlum) and lucigenin-enhanced (CLluc) chemiluminescence (CL) assays. The mechanisms involved this activity of liposomal flavonoids, such as cytotoxicity and superoxide anion scavenging capacity, and their effect on phagocytosis of ICs were also investigated. Results and discussion: The results showed that the inhibitory effect of liposomal flavonoids on CLlum and CLluc is inversely related to the number of hydroxyl groups in the flavonoid B ring. Moreover, phagocytosis of liposomes by neutrophils does not seem to necessarily promote such activity, as the liposomal flavonoids are also able to reduce CL when the cells are pretreated with cytochalasin B. Under assessed conditions, the antioxidant liposomes are not toxic to the human neutrophils and do not interfere with IC-induced phagocytosis. Conclusion: The studied liposomes can be suitable carriers of flavonoids and be an alternative for the treatment of diseases in which a massive oxidative metabolism of neutrophils is involved.