881 resultados para Immune Tolerance
Resumo:
Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF- production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.
Resumo:
Understanding immune tolerance mechanisms is a major goal of immunology research, but mechanistic studies have generally required the use of mouse models carrying untargeted or targeted antigen receptor transgenes, which distort lymphocyte development and therefore preclude analysis of a truly normal immune system. Here we demonstrate an advance in in vivo analysis of immune tolerance that overcomes these shortcomings. We show that custom superantigens generated by single chain antibody technology permit the study of tolerance in a normal, polyclonal immune system. In the present study we generated a membrane-tethered anti-Igkappa-reactive single chain antibody chimeric gene and expressed it as a transgene in mice. B cell tolerance was directly characterized in the transgenic mice and in radiation bone marrow chimeras in which ligand-bearing mice served as recipients of nontransgenic cells. We find that the ubiquitously expressed, Igkappa-reactive ligand induces efficient B cell tolerance primarily or exclusively by receptor editing. We also demonstrate the unique advantages of our model in the genetic and cellular analysis of immune tolerance.
Resumo:
T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.
Resumo:
Plasmacytoid dendritic cells (pDCs) were first described as interferon-producing cells and, for many years, their overlapping characteristics with both lymphocytes and classical dendritic cells (cDCs) created confusion over their exact ontogeny. In this Viewpoint article, Nature Reviews Immunology asks five leaders in the field to discuss their thoughts on the development and functions of pDCs--do these cells serve mainly as a major source of type I interferons or do they also make other important contributions to immune responses?
Resumo:
L’hépatite auto-immune (HAI) est une maladie chronique caractérisée par une destruction progressive du parenchyme hépatique par le système immunitaire. La majorité des patients atteints d’HAI sont des femmes (75% à 90% des cas). L’amélioration des traitements au cours des dernières années a permis à un grand nombre de ces femmes de devenir enceintes. Pendant la grossesse, une rémission spontanée de la maladie a pu être observée chez les femmes atteintes d’HAI. Cette rémission est temporaire et elle est généralement suivie d’une rechute suite à l’accouchement (post-partum). Les causes exactes de cette rémission associée à la grossesse et de la rechute post-partum ne sont pas connues à ce jour. Nous avons donc tenté de reproduire ces phénomènes dans un modèle murin d’HAI développé dans notre laboratoire, afin de déterminer les mécanismes possiblement impliqués. Notre modèle d’HAI consiste en une xéno-immunisation de souris C57BL/6 avec les auto-antigènes impliqués dans l’HAI de type 2 chez l’humain. Nous avons ainsi accouplées des souris préalablement xéno-immunisées, puis nous les avons sacrifiées au début de la 3e semaine de gestation ou 2 à 3 semaines post-partum, afin d’évaluer les dommages hépatiques et afin d’étudier la réponse immunitaire. Comme chez les femmes atteintes d’HAI, les souris présentent une rémission de la maladie pendant la grossesse. Nous en sommes venus à cette conclusion par l’observation d’une diminution de l’inflammation hépatique, des niveaux de transaminases sériques et des titres d’auto-anticorps circulants. À l’inverse des humains, les souris xéno-immunisées ne présentent pas de rechute post-partum. Une analyse des cellules régulatrices (cellules T régulatrices et cellules B productrices d'IL-10) suggère une implication des Tregs hépatiques dans la rémission, car ceux-ci sont augmentés pendant la gestation. Ces Tregs hépatiques sont majoritairement d’origine thymique et ne semblent pas particulièrement attirés au foie en réponse à l’inflammation. La polarisation TH2 est un phénomène connu pendant la grossesse, par contre elle ne semble pas influencer la réponse auto-immune dans nos souris. Une meilleure compréhension des mécanismes d’immunosuppression observés lors de la grossesse pourrait mener au développement d’une thérapie mieux ciblée.
Resumo:
There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Microorganisms in the pregnant female genital tract are not always associated with pathology. The factors that influence the maternal response to microorganisms remain ill defined. We review the state of knowledge of microbe-host interactions in gestational tissues and highlight mechanisms that promote tolerance or pathogenesis. Tolerance to microorganisms is promoted during pregnancy by several mechanisms including upregulation of anti-inflammatory mediators, induction of endotoxin tolerance, and possibly by regulation of autophagy. Conversely, an altered vaginal microbiota or a pre-existing viral presence may result in induction of excessive inflammation and preterm labor. Although infections play a prevalent role in preterm birth, microbes are present in gestational tissues of women with healthy outcomes and may provide beneficial functions. The complex interactions between different microbial species and the maternal immune system during gestation remain incompletely elucidated.
Resumo:
There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.
Resumo:
Some organ-transplanted patients achieve a state of "operational tolerance" (01) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, 100, TGFB1, TGFBR1/TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The interaction of bovine viral diarrhea virus (BVD virus) with its host has several unique features, most notably the capacity to infect its host either transiently or persistently. The transient infection stimulates an antiviral immune reaction similar to that seen in other transient viral infections. In contrast, being associated with immunotolerance specific for the infecting BVD viral strain, the persistent infection differs fundamentally from other persistent infections like those caused by lentiviruses. Whereas the latter are characterized by complex viral evasion of the host's adaptive immune response by mechanisms such as antigenic drift and interference with presentation of T cell epitopes, BVD virus avoids the immune response altogether by inducing both humoral and cellular immune tolerance. This is made possible by invasion of the fetus at an early stage of development. In addition to adaptive immunity, BVD virus also manipulates key elements of the host's innate immune response. The non-cytopathic biotype of BVD virus, which is capable of persistently infecting its host, fails to induce type I interferon. In addition, persistently infected cells are resistant to the induction of apoptosis by double-stranded RNA and do not produce interferon when treated with this pathogen-associated molecular pattern (PAMP) that signals viral infection. Moreover, when treated with interferon, cells persistently infected with non-cytopathic BVD virus do not clear the virus. Surprisingly, however, despite this lack of effect on persistent infection, interferon readily induces an antiviral state in these cells, as shown by the protection against infection by unrelated viruses. Overall, BVD virus manipulates the host's interferon defense in a manner that optimises its chances of maintaining the persistent infection as well as decreasing the risks that heterologous viral infections may carry for the host. Thus, since not all potential host cells are infected in animals persistently infected with BVD virus, heterologous viruses replicating in cells uninfected with BVD virus will still trigger production of interferon. Interferon produced by such cells will curtail the replication of heterologous viruses only, be that in cells already infected with BVD virus, or in cells in which the heterologous virus may replicate alone. From an evolutionary viewpoint, this strategy clearly enhances the chances of transmission of BVD virus to new hosts, as it attenuates the negative effects that a global immunosuppression would have on the survival of persistently infected animals.
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.
Resumo:
Mucosal adjuvants are important to overcome the state of immune tolerance normally associated with mucosal delivery and to enhance adaptive immunity to often-weakly immunogenic subunit vaccine antigens. Unfortunately, adverse side effects of many experimental adjuvants limit the number of adjuvants approved for vaccination. Lipid C is a novel, non-toxic, lipid oral vaccine-delivery formulation, developed originally for oral delivery of the live Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine. In the present study, murine models of chlamydial respiratory and genital tract infections were used to determine whether transcutaneous immunization (TCI) with Lipid C-incorporated protein antigens could elicit protective immunity at the genital and respiratory mucosae. BALB/c mice were immunized transcutaneously with Lipid C containing the chlamydial major outer membrane protein (MOMP), with and without addition of cholera toxin and CpG-ODN 1826 (CT/CpG). Both vaccine combinations induced mixed cell-mediated and mucosal antibody immune responses. Immunization with Lipid C-incorporated MOMP (Lipid C/MOMP), either alone or with CT/CpG resulted in partial protection following live challenge with Chlamydia muridarum as evidenced by a significant reduction in recoverable Chlamydia from both the genital secretions and lung tissue. Protection induced by immunization with Lipid C/MOMP alone was not further enhanced by the addition of CT/CpG. These results highlight the potential of Lipid C as a novel mucosal adjuvant capable of targeting multiple mucosal surfaces following TCI. Protection at both the respiratory and genital mucosae was achieved without the requirement for potentially toxic adjuvants, suggesting that Lipid C may provide a safe effective mucosal adjuvant for human vaccination.