903 resultados para Immobilized enzymes
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.
Resumo:
La cartographie peptidique est une méthode qui permet entre autre d’identifier les modifications post-traductionnelles des protéines. Elle comprend trois étapes : 1) la protéolyse enzymatique, 2) la séparation par électrophorèse capillaire (CE) ou chromatographie en phase liquide à haute performance (HPLC) des fragments peptidiques et 3) l’identification de ces derniers. Cette dernière étape peut se faire par des méthodes photométriques ou par spectrométrie de masse (MS). Au cours de la dernière décennie, les enzymes protéolytiques immobilisées ont acquis une grande popularité parce qu’elles peuvent être réutilisées et permettent une digestion rapide des protéines due à un rapport élevé d’enzyme/substrat. Pour étudier les nouvelles techniques d’immobilisation qui ont été développées dans le laboratoire du Professeur Waldron, la cartographie peptidique par CE est souvent utilisée pour déterminer le nombre total de peptides détectés et leurs abondances. La CE nous permet d’avoir des séparations très efficaces et lorsque couplée à la fluorescence induite par laser (LIF), elle donne des limites de détection qui sont 1000 fois plus basses que celles obtenues avec l’absorbance UV-Vis. Dans la méthode typique, les peptides venant de l’étape 1) sont marqués avec un fluorophore avant l’analyse par CE-LIF. Bien que la sensibilité de détection LIF puisse approcher 10-12 M pour un fluorophore, la réaction de marquage nécessite un analyte dont la concentration est d’au moins 10-7 M, ce qui représente son principal désavantage. Donc, il n’est pas facile d’étudier les enzymes des peptides dérivés après la protéolyse en utilisant la technique CE-LIF si la concentration du substrat protéique initial est inférieure à 10-7 M. Ceci est attribué à la dilution supplémentaire lors de la protéolyse. Alors, afin d’utiliser le CE-LIF pour évaluer l’efficacité de la digestion par enzyme immobilisée à faible concentration de substrat,nous proposons d’utiliser des substrats protéiques marqués de fluorophores pouvant être purifiés et dilués. Trois méthodes de marquage fluorescent de protéine sont décrites dans ce mémoire pour étudier les enzymes solubles et immobilisées. Les fluorophores étudiés pour le marquage de protéine standard incluent le naphtalène-2,3-dicarboxaldéhyde (NDA), la fluorescéine-5-isothiocyanate (FITC) et l’ester de 6-carboxyfluorescéine N-succinimidyl (FAMSE). Le FAMSE est un excellent réactif puisqu’il se conjugue rapidement avec les amines primaires des peptides. Aussi, le substrat marqué est stable dans le temps. Les protéines étudiées étaient l’-lactalbumine (LACT), l’anhydrase carbonique (CA) et l’insuline chaîne B (INB). Les protéines sont digérées à l’aide de la trypsine (T), la chymotrypsine (CT) ou la pepsine (PEP) dans leurs formes solubles ou insolubles. La forme soluble est plus active que celle immobilisée. Cela nous a permis de vérifier que les protéines marquées sont encore reconnues par chaque enzyme. Nous avons comparé les digestions des protéines par différentes enzymes telles la chymotrypsine libre (i.e., soluble), la chymotrypsine immobilisée (i.e., insoluble) par réticulation avec le glutaraldéhyde (GACT) et la chymotrypsine immobilisée sur billes d’agarose en gel (GELCT). Cette dernière était disponible sur le marché. Selon la chymotrypsine utilisée, nos études ont démontré que les cartes peptidiques avaient des différences significatives selon le nombre de pics et leurs intensités correspondantes. De plus, ces études nous ont permis de constater que les digestions effectuées avec l’enzyme immobilisée avaient une bonne reproductibilité. Plusieurs paramètres quantitatifs ont été étudiés afin d’évaluer l’efficacité des méthodes développées. La limite de détection par CE-LIF obtenue était de 3,010-10 M (S/N = 2,7) pour la CA-FAM digérée par GACT et de 2,010-10 M (S/N = 4,3) pour la CA-FAM digérée par la chymotrypsine libre. Nos études ont aussi démontrées que la courbe d’étalonnage était linéaire dans la région de travail (1,0×10-9-1,0×10-6 M) avec un coefficient de corrélation (R2) de 0,9991.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.
Resumo:
Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.
Resumo:
Invertase was immobilized on acid activated montmorillonite via two independent procedures, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and their activity was tested in a fixed bed reactor. XRD revealed that the enzyme was situated on the periphery of the clay and the side chains of different amino acid residues were involved in intercalation with the clay matrix. NMR demonstrated that tetrahedral Al was linked to the enzyme during adsorption and the octahedral Al was involved during covalent binding. Secondary interaction of the enzyme with Al was also observed. N2 adsorption studies showed that covalent binding of enzymes caused pore blockage since the highly polymeric species were located at the pore entrance. The fixed bed reactor proved to be efficient for the immobilized invertase. The optimum pH and pH stability improved upon immobilization. The kinetic parameters calculated also showed an enhanced efficiency of the immobilized systems. They could be used continuously for long period. Covalently bound invertase demonstrated greater operational stability.
Resumo:
Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.
Resumo:
This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated.
Resumo:
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into consideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into onsideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
本文报告了丝状真菌单宁酶发酵五倍子及有机溶剂中酶法合成没食子酸丙酯的研究。利用单宁和/或五倍子诱导丝状真菌产生单宁 酶的原理,借助二级发酵程序,对从天然源得到的75株菌进行了生物转化实验研究。选择出既能水解单宁或五倍子成没食子酸,又 能把没食子酸和丙醇合成没食子酸丙酯,而且生物催化活性都较高的1株菌,这株菌经初步鉴定为黑曲霉(Aspergillus niger No.17)。随后对它开展了产酶条件和参数优化实验,得出了最佳培养条件。立足于参数优化实验方案的基础上,经由液体培养发酵 制备单宁酶制剂,并把该酶通过化学手段共价结合到一种新型载体—聚乙烯醇和戊二醛反应生成的缩醛上,制备得到固定化单宁酶 。这种固定化生物催化剂在两种有机介质体系中都具有逆向催化合成没食子酸丙酯的能力。最后建立起来一条有效可行的微生物酶 法制备没食子酸的技术途径,没食子酸产率达到70%。对这种物质进行元素 分析:含C,49.45%;含H,3.63%。它的熔点为237℃~243 ℃,三种溶剂系统的TLC均只给出一个斑点。这些数据都与标准品一致。有机溶剂中酶法合成没食子酸丙酯的技术途径已经建立。 水溶性单宁酶在潜溶剂体系中也能催化上述酯化反应,反应混合物中的PG浓度为16.4mmol/L,制备薄层被用于分离反应混合物所含 的PG,这种产物被红外、质谱及三种溶剂系统的TLC等方法鉴定,确证为目标产物。在这一学位论文的实验研究过程中,还包括一 些生化分析方法的建立和应用,这些方法用于鉴定底物和产物及测定它们的浓度,其内容主要包括TLC定性/半定量分析、元素分析 、质谱、红外等手段的综合运用。本工作为开发我国特有的天然产物资源—五倍子的生物化工加工技术及非水相生物催化技术的开 发,提供了有用的基础数据资料,具有应用基础研究工作的重要性。In this thesis, the studies on the fermentation of Chinese gallotannin by filamentous fungi with tannase activity and enzymatic synthesis of propyl gallate(PG) in organic solvents were described through these biocatalysts. Based on the principles of induction enzyme, the tannase produced from filamentous fungi by adding tannic acid(TA) and/or Chinese gallotannin into media was investigated, and the screening experiments of bioconversion were done with 75 strains by means of a two-stage fermentation procedure. These strains were isolated with the enrichment culture technique from natural sources. Hence we selected one strain (Aspergillus niger No.17) that can not only catalyze the hydrolyses of TA and/or Chinese gallotannin into gallic acid(GA) in the liquid cultures, but also be used to synthesize PG from propanol and GA in the non-aqueous media. At the same time both of its biocatalytical activities were higher. This strain was calssified to be Aspergillus niger by the primary identification. Then optimum conditions for production of the tannase and its parameters were examined. In this way, one set of optimum culture conditions was selected. Making use of the optimum proposal, the tanase was prepared through a liquid fermentation procedure. The enzyme was convalently coupled to a new type of carrier which was made chemically from polyvinyl alcohol(PVA)and glutaraldehyde. The immobilized enzymes were able to synthesize PG reversely in two organic media. Finally, an effective enzymatic technique for production of GA was developed. The yield of GA products was up to 70%。Element analysis for this substance: calce: C, 49.42%; H, 3.56%; found: C, 49.45%, H, 3.63%. Its melting point was 237℃~ 243℃ and TLCs on three solvent systems gave only one spot respectively. These data were identical with theauthentic GA. The enzymatic synthesis of PG in organic solvents was extablished with reverse route of tannase catalytical hydrolysis. Aqueous enzyme perparation also catalyzed above esterification in a buffer system. The PG concentration in the reaction mixture was 16.4mmol/L. The reparative-scale TLC was used to isolate PG from the reaction mixture. This product separated was identified by IR, MS and TLC on three solvent systems. In this study of thesis, some biochemical analytical mehtods were developed and used to identify substrates and products, and to determinate their concentration. These methods, including TLC qualitative/half quantitative analysis, element analysis, MS, IR and so on, were useful, available and performable. This work provided basic data and information for developing the biochemical engineering and bio-processing of Chinese gallotannin-a special natural resource in China and the non-aqueous phase biocatalysis. Thus, this study possesses importance in the applied and basic research work.
Resumo:
Réalisé en codirection avec Karen C. Waldron et Dominic Rochefort.