932 resultados para Immature Antigen-presenting Cell
Resumo:
The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3+ T cells. Generally, the uptake of particles increased the expression of CD40 and CD86 in all DC populations, independent of particle size, whereas 20-nm particles induced enhanced antigen presentation to CD4+ T cells in LDLNs in vivo. Despite measurable uptake by DCs, the majority of particles were taken up by AMs, irrespective of size. Confocal microscopy and FACS analysis showed few particles in the main conducting airways, but a homogeneous distribution of all particle sizes was evident in the lung parenchyma, mostly confined to AMs. Particulate size as a key parameter determining uptake and trafficking therefore determines the fate of inhaled particulates, and this may have important consequences in the development of novel carriers for pulmonary diagnostic or therapeutic applications.
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
Agrin is over-expressed by activated and autoimmune T cells, and synergizes with the T cell receptor (TCR) to augment cell activation. In the present study, we show that Agrin accumulates to distinct areas of the plasma membrane and that cell activation causes its redistribution. During antigen presentation, Agrin primarily accumulates to the periphery of the mature immunological synapse, mostly in lamellipodia-like protrusions that wrap around the antigen-presenting cell and, conversely, anti-Agrin sera induced a significant redistribution of TCR at the plasma membrane. We also provide evidence for the expression of Agrin receptors in peripheral blood monocytes, dendritic cells and a fraction of B cells. Interestingly, interferon-a treatment, which induces the expression of Agrin in T cells, also augmented Agrin binding to monocytes. Stimulation of monocytes with recombinant Agrin induced the clustering of surface receptors, including major histocompatibility complex class II, activation of intracellular signalling cascades, as well as enhanced dsRNA-induced expression of pro-inflammatory cytokines interleukin-6 and tumour necrosis factor-a. Collectively, these results confirm the location of Agrin at the immunological synapse between T cells and antigen-presenting cells and justify further characterization of its receptors in the immune system.
Resumo:
Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c(+)) and plasmacytoid (CD123(+)) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR+IC). Although DR+IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR+IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR+IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR+IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR+IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.
Resumo:
Background: Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods: Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14-16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results: The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion: CpG-ODN treatment did not induce specific maturation and cytokine expression in foal macrophages and DCs. Nevertheless, adult horse DCs, but not macrophages, increased their expression of IL-12 and IFNα cytokines upon CpG-ODN stimulation. Importantly, foals presented an age-dependent limitation in the expression of MHC class II in macrophages and DCs, independent of treatment. © 2007 Flaminio et al; licensee BioMed Central Ltd.
Resumo:
During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav−/− mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav+/− mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav−/− mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.
Resumo:
The mechanisms by which cells rapidly polarize in the direction of external signals are not understood. Helper T cells, when contacted by an antigen-presenting cell, polarize their cytoskeletons toward the antigen-presenting cell within minutes. Here we show that, in T cells, the mammalian Ras-related GTPase CDC42 (the homologue of yeast CDC42, a protein involved in budding polarity) can regulate the polarization of both actin and microtubules toward antigen-presenting cells but is not involved in other T-cell signaling processes such as those which culminate in interleukin 2 production. Although T-cell polarization appears dispensable for signaling leading to interleukin 2 production, polarization may direct lymphokine secretion towards the correct antigen-presenting cell in a crowded cellular environment. Inhibitor experiments suggest that phosphatidylinositol 3-kinase is required for cytoskeletal polarization but that calcineurin activity, known to be important for other aspects of signaling, is not. Apparent conservation of CDC42 function between yeast and T cells suggests that this GTPase is a general regulator of cytoskeletal polarity in many cell types.
Resumo:
Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8+ cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11–25 amino acids, corresponding to defined CD8+ T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (−1 or −2) decreased or completely blocked (charge of −4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity.
Resumo:
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.
Resumo:
Although they are considered as antigen presenting cells (APC), the role of antigen-unspecific B-lymphocytes in antigen presentation and T lymphocyte stimulation remains controversial. In this paper, we tested the capacity of normal human peripheral activated B cells to stimulate T cells using melanoma antigens or melanoma cell lysates. B lymphocytes activated through CD40 ligation and then pulsed with tumor antigens efficiently processed and presented MHC class II restricted peptides to specific CD4+ T cell clones. This suggests that CD40-activated B cells have the functional and molecular competence to present MHC class II epitopes when pulsed with exogenous antigens, thereby making them a relevant source of APC to generate T cells. To test this hypothesis, CD40-activated B cells were pulsed with a lysate prepared from melanoma cells and used to stimulate peripheral autologous T cells. Interestingly, T cells specific to melanoma antigens were generated. Further analysis of these T cell clones revealed that they recognized MHC class II restricted epitopes from tyrosinase, a known melanoma tumor antigen. The efficient antigen presentation by antigen-unspecific activated B cells was correlated with a down-regulation in the expression of HLA-DO, a B cell specific protein known to interfere with HLA-DM function. Because HLA-DM is important in MHC class II peptide loading, the observed decrease in HLA-DO may partially explain the enhanced antigen presentation following B-cell activation. Results globally suggest that when they are properly activated, antigen-unspecific B-lymphocytes can present exogenous antigens by MHC class II molecules and stimulate peripheral antigen-specific T cells. Antigen presentation by activated B cells could be exploited for immunotherapy by allowing the in vitro generation of T cells specific against antigens expressed by tumors or viruses.