902 resultados para Imagens aéreas
Resumo:
This research presents a methodology for prediction of building shadows cast on urban roads existing on high-resolution aerial imagery. Shadow elements can be used in the modeling of contextual information, whose use has become more and more common in image analysis complex processes. The proposed methodology consists in three sequential steps. First, the building roof contours are manually extracted from an intensity image generated by the transformation of a digital elevation model (DEM) obtained from airborne laser scanning data. In similarly, the roadside contours are extracted, now from the radiometric information of the laser scanning data. Second, the roof contour polygons are projected onto the adjacent roads by using the parallel projection straight lines, whose directions are computed from the solar ephemeris, which depends on the aerial image acquisition time. Finally, parts of shadow polygons that are free from building perspective obstructions are determined, given rise to new shadow polygons. The results obtained in the experimental evaluation of the methodology showed that the method works properly, since it allowed the prediction of shadow in high-resolution imagery with high accuracy and reliability.
Resumo:
This article proposes a method for 3D road extraction from a stereopair of aerial images. The dynamic programming (DP) algorithm is used to carry out the optimization process in the object-space, instead of usually doing it in the image-space such as the DP traditional methodologies. This means that road centerlines are directly traced in the object-space, implying that a mathematical relationship is necessary to connect road points in object and image-space. This allows the integration of radiometric information from images into the associate mathematical road model. As the approach depends on an initial approximation of each road, it is necessary a few seed points to coarsely describe the road. Usually, the proposed method allows good results to be obtained, but large anomalies along the road can disturb its performance. Therefore, the method can be used for practical application, although it is expected some kind of local manual edition of the extracted road centerline.
Resumo:
In this work we propose a technique that uses uncontrolled small format aerial images, or SFAI, and stereohotogrammetry techniques to construct georeferenced mosaics. Images are obtained using a simple digital camera coupled with a radio controlled (RC) helicopter. Techniques for removing common distortions are applied and the relative orientation of the models are recovered using projective geometry. Ground truth points are used to get absolute orientation, plus a definition of scale and a coordinate system which relates image measures to the ground. The mosaic is read into a GIS system, providing useful information to different types of users, such as researchers, governmental agencies, employees, fishermen and tourism enterprises. Results are reported, illustrating the applicability of the system. The main contribution is the generation of georeferenced mosaics using SFAIs, which have not yet broadly explored in cartography projects. The proposed architecture presents a viable and much less expensive solution, when compared to systems using controlled pictures
Resumo:
Neste artigo é proposto um método semiautomático para extração de rodovias combinando um estereopar de imagens aéreas de baixa resolução com um poliedro gerado a partir de um modelo digital do terreno (MDT). O problema é formulado no espaço-objeto através de uma função objetivo que modela o objeto 'rodovia' como uma curva suave e pertencente a uma superfície poliédrica. A função objetivo proposta depende também de informações radiométricas, que são acessadas no espaço-imagem via relação de colinearidade entre pontos da rodovia no espaço-objeto e os correspondentes nos espaços imagem do estereopar. A linha poligonal que melhor modela a rodovia selecionada é obtida por otimização no espaço-objeto da função objetivo, tendo por base o algoritmo de programação dinâmica. O processo de otimização é iterativo e dependente do fornecimento por um operador de uma aproximação inicial para a rodovia selecionada. Os resultados obtidos mostraram que o método é robusto frente a anomalias existentes ao longo das rodovias, tais como obstruções causadas por sombras e árvores.
Resumo:
The present work evaluated urban forest indicators, acquired through airborne high-resolution multiespectral images, on the quality of the urban design and its vegetative fraction, in special its trees, in nine neighborhoods of Piracicaba, SP. There were made supervised classifications for characterization of intra-urban elements and the proportions obtained, as exposed soil, tree cover, lawns, asphalt, concrete pavements and roofs. They were studied for the measurement of the urban forest in each place. These variables were related to each other, as well as with the independent variables: population density, people with more than fifteen years of study and family heads with income above twenty minimum wages, obtained through population census. Through the analysis of linear regression variables were identified for intra-urban areas evaluation. Correlations were made and linear regressions among the data obtained from the image and among the proposed indicators. Negative correlations were obtained among population density and arboreal covering and the evaluated indices, in accordance with the predicted in the literature. Composite indicators are proposed, as: the proportion between arboreous space on waterproof space (PAW) and the proportion between arboreous space on building space (PAB). It is concluded by the possibility of the use of those indicators for evaluation of the urban forest and definition of priorities in the execution of ordinances to the improvement of the urban forestry, being prioritized the application of resources in the most lacking neighborhoods.
Resumo:
The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA