881 resultados para Image post processing
Resumo:
This paper presents a semi-automated method for extracting road segments from medium-resolution images based on active testing and edge analysis. The method is based on two sequential and independent stages. Firstly, an active testing method is used to extract an approximated road centreline which is based on a sequential and local exploitation of the image. Secondly, an iterative strategy based on edge analysis and the approximated centreline is used to measure precisely the road centreline. Based on the results obtained using medium-resolution test images, the method seems to be very promising. In general, the method proved to be very accurate whenever the roads are characterized by two well-defined anti-parallel edges and robust even in the presence of larger obstacles such as trees and shadows.
Resumo:
This paper addresses the problem of resolving ambiguities in frequently confused online Tamil character pairs by employing script specific algorithms as a post classification step. Robust structural cues and temporal information of the preprocessed character are extensively utilized in the design of these algorithms. The methods are quite robust in automatically extracting the discriminative sub-strokes of confused characters for further analysis. Experimental validation on the IWFHR Database indicates error rates of less than 3 % for the confused characters. Thus, these post processing steps have a good potential to improve the performance of online Tamil handwritten character recognition.
Resumo:
We address the problem of speech enhancement in real-world noisy scenarios. We propose to solve the problem in two stages, the first comprising a generalized spectral subtraction technique, followed by a sequence of perceptually-motivated post-processing algorithms. The role of the post-processing algorithms is to compensate for the effects of noise as well as to suppress any artifacts created by the first-stage processing. The key post-processing mechanisms are aimed at suppressing musical noise and to enhance the formant structure of voiced speech as well as to denoise the linear-prediction residual. The parameter values in the techniques are fixed optimally by experimentally evaluating the enhancement performance as a function of the parameters. We used the Carnegie-Mellon university Arctic database for our experiments. We considered three real-world noise types: fan noise, car noise, and motorbike noise. The enhancement performance was evaluated by conducting listening experiments on 12 subjects. The listeners reported a clear improvement (MOS improvement of 0.5 on an average) over the noisy signal in the perceived quality (increase in the mean-opinion score (MOS)) for positive signal-to-noise-ratios (SNRs). For negative SNRs, however, the improvement was found to be marginal.
Resumo:
In this paper we propose a postprocessing technique for a spectrogram diffusion based harmonic/percussion decom- position algorithm. The proposed technique removes har- monic instrument leakages in the percussion enhanced out- puts of the baseline algorithm. The technique uses median filtering and an adaptive detection of percussive segments in subbands followed by piecewise signal reconstruction using envelope properties to ensure that percussion is enhanced while harmonic leakages are suppressed. A new binary mask is created for the percussion signal which upon applying on the original signal improves harmonic versus percussion separation. We compare our algorithm with two recent techniques and show that on a database of polyphonic Indian music, the postprocessing algorithm improves the harmonic versus percussion decomposition significantly.
Resumo:
It is well known that extremely long low-density parity-check (LDPC) codes perform exceptionally well for error correction applications, short-length codes are preferable in practical applications. However, short-length LDPC codes suffer from performance degradation owing to graph-based impairments such as short cycles, trapping sets and stopping sets and so on in the bipartite graph of the LDPC matrix. In particular, performance degradation at moderate to high E-b/N-0 is caused by the oscillations in bit node a posteriori probabilities induced by short cycles and trapping sets in bipartite graphs. In this study, a computationally efficient algorithm is proposed to improve the performance of short-length LDPC codes at moderate to high E-b/N-0. This algorithm makes use of the information generated by the belief propagation (BP) algorithm in previous iterations before a decoding failure occurs. Using this information, a reliability-based estimation is performed on each bit node to supplement the BP algorithm. The proposed algorithm gives an appreciable coding gain as compared with BP decoding for LDPC codes of a code rate equal to or less than 1/2 rate coding. The coding gains are modest to significant in the case of optimised (for bipartite graph conditioning) regular LDPC codes, whereas the coding gains are huge in the case of unoptimised codes. Hence, this algorithm is useful for relaxing some stringent constraints on the graphical structure of the LDPC code and for developing hardware-friendly designs.
Resumo:
The operation on how high quality single-mode operation can be readily attained on etching circles in multimode devices is discussed. Arrays of such spots can also be envisaged. Control of the polarization state is also achieved by use of deep line etches. The output filaments and beam shapes of the conventional multimode vertical cavity surface emitting lasers (VCSEL) is shown to be engineered in terms of their positions, widths, and polarizations by use of focused ion beam etching (FIBE). Several GaAs quantum well top-emitting devices with cavity diameters of 10 μm and 18 μm were investigated.
Resumo:
Single-mode emission is achieved in previously multimode gain-guided vertical-cavity surface-emitting lasers (VCSEL's) by localized modification of the mirror reflectivity using focused ion-beam etching. Reflectivity engineering is also demonstrated to suppress transverse mode emission in an oxide-confined device, reducing the spectral width from 1.2 nm to less than 0.5 nm.
Resumo:
Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Senior thesis written for Oceanography 445