777 resultados para Image filtering
Resumo:
One of the main concerns of evolvable and adaptive systems is the need of a training mechanism, which is normally done by using a training reference and a test input. The fitness function to be optimized during the evolution (training) phase is obtained by comparing the output of the candidate systems against the reference. The adaptivity that this type of systems may provide by re-evolving during operation is especially important for applications with runtime variable conditions. However, fully automated self-adaptivity poses additional problems. For instance, in some cases, it is not possible to have such reference, because the changes in the environment conditions are unknown, so it becomes difficult to autonomously identify which problem requires to be solved, and hence, what conditions should be representative for an adequate re-evolution. In this paper, a solution to solve this dependency is presented and analyzed. The system consists of an image filter application mapped on an evolvable hardware platform, able to evolve using two consecutive frames from a camera as both test and reference images. The system is entirely mapped in an FPGA, and native dynamic and partial reconfiguration is used for evolution. It is also shown that using such images, both of them being noisy, as input and reference images in the evolution phase of the system is equivalent or even better than evolving the filter with offline images. The combination of both techniques results in the completely autonomous, noise type/level agnostic filtering system without reference image requirement described along the paper.
Resumo:
Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.
Resumo:
With the ongoing shift in the computer graphics industry toward Monte Carlo rendering, there is a need for effective, practical noise-reduction techniques that are applicable to a wide range of rendering effects and easily integrated into existing production pipelines. This course surveys recent advances in image-space adaptive sampling and reconstruction algorithms for noise reduction, which have proven very effective at reducing the computational cost of Monte Carlo techniques in practice. These approaches leverage advanced image-filtering techniques with statistical methods for error estimation. They are attractive because they can be integrated easily into conventional Monte Carlo rendering frameworks, they are applicable to most rendering effects, and their computational overhead is modest.
Resumo:
Behaviour analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in Civil Engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
Meteorological satellite and radar data comparative analysis allows to correlate the precipitation structures observed in both images. Such analysis would make feasible the extension of the range of ground-based meteorological radars. In addition to the different spatial and temporal resolution of these images this comparative analysis presents difficulties due to the effects of rotation and distortion, besides the different formats, projections, and coordinate systems. This work employed an approach based on a Gaussian adaptive filter in order to compare such images. The statistical results obtained from the comparison of the images are matched to those produced by other methods.
Resumo:
This paper presents an analysis of the fault tolerance achieved by an autonomous, fully embedded evolvable hardware system, which uses a combination of partial dynamic reconfiguration and an evolutionary algorithm (EA). It demonstrates that the system may self-recover from both transient and cumulative permanent faults. This self-adaptive system, based on a 2D array of 16 (4×4) Processing Elements (PEs), is tested with an image filtering application. Results show that it may properly recover from faults in up to 3 PEs, that is, more than 18% cumulative permanent faults. Two fault models are used for testing purposes, at PE and CLB levels. Two self-healing strategies are also introduced, depending on whether fault diagnosis is available or not. They are based on scrubbing, fitness evaluation, dynamic partial reconfiguration and in-system evolutionary adaptation. Since most of these adaptability features are already available on the system for its normal operation, resource cost for self-healing is very low (only some code additions in the internal microprocessor core)
Resumo:
Evolvable hardware (EH) is an interesting alternative to conventional digital circuit design, since autonomous generation of solutions for a given task permits self-adaptivity of the system to changing environments, and they present inherent fault tolerance when evolution is intrinsically performed. Systems based on FPGAs that use Dynamic and Partial Reconfiguration (DPR) for evolving the circuit are an example. Also, thanks to DPR, these systems can be provided with scalability, a feature that allows a system to change the number of allocated resources at run-time in order to vary some feature, such as performance. The combination of both aspects leads to scalable evolvable hardware (SEH), which changes in size as an extra degree of freedom when trying to achieve the optimal solution by means of evolution. The main contributions of this paper are an architecture of a scalable and evolvable hardware processing array system, some preliminary evolution strategies which take scalability into consideration, and to show in the experimental results the benefits of combined evolution and scalability. A digital image filtering application is used as use case.
Resumo:
Speckle noise formed as a result of the coherent nature of ultrasound imaging affects the lesion detectability. We have proposed a new weighted linear filtering approach using Local Binary Patterns (LBP) for reducing the speckle noise in ultrasound images. The new filter achieves good results in reducing the noise without affecting the image content. The performance of the proposed filter has been compared with some of the commonly used denoising filters. The proposed filter outperforms the existing filters in terms of quantitative analysis and in edge preservation. The experimental analysis is done using various ultrasound images
Resumo:
Objectives: Lung hyperinflation may be assessed by computed tomography (CT). As shown for patients with emphysema, however, CT image reconstruction affects quantification of hyperinflation. We studied the impact of reconstruction parameters on hyperinflation measurements in mechanically ventilated (MV) patients. Design: Observational analysis. Setting: A University hospital-affiliated research Unit. Patients: The patients were MV patients with injured (n = 5) or normal lungs (n = 6), and spontaneously breathing patients (n = 5). Interventions: None. Measurements and results: Eight image series involving 3, 5, 7, and 10 mm slices and standard and sharp filters were reconstructed from identical CT raw data. Hyperinflated (V-hyper), normally (V-normal), poorly (V-poor), and nonaerated (V-non) volumes were calculated by densitometry as percentage of total lung volume (V-total). V-hyper obtained with the sharp filter systematically exceeded that with the standard filter showing a median (interquartile range) increment of 138 (62-272) ml corresponding to approximately 4% of V-total. In contrast, sharp filtering minimally affected the other subvolumes (V-normal, V-poor, V-non, and V-total). Decreasing slice thickness also increased V-hyper significantly. When changing from 10 to 3 mm thickness, V-hyper increased by a median value of 107 (49-252) ml in parallel with a small and inconsistent increment in V-non of 12 (7-16) ml. Conclusions: Reconstruction parameters significantly affect quantitative CT assessment of V-hyper in MV patients. Our observations suggest that sharp filters are inappropriate for this purpose. Thin slices combined with standard filters and more appropriate thresholds (e.g., -950 HU in normal lungs) might improve the detection of V-hyper. Different studies on V-hyper can only be compared if identical reconstruction parameters were used.
Resumo:
A large area colour imager optically addressed is presented. The colour imager consists of a thin wide band gap p-i-n a-SiC:H filtering element deposited on the top of a thick large area a-SiC:H(-p)/a-Si:H(-i)/a-SiC:H(-n) image sensor, which reveals itself an intrinsic colour filter. In order to tune the external applied voltage for full colour discrimination the photocurrent generated by a modulated red light is measured under different optical and electrical bias. Results reveal that the integrated device behaves itself as an imager and a filter giving information not only on the position where the optical image is absorbed but also on it wavelength and intensity. The amplitude and sign of the image signals are electrically tuneable. In a wide range of incident fluxes and under reverse bias, the red and blue image signals are opposite in sign and the green signal is suppressed allowing blue and red colour recognition. The green information is obtained under forward bias, where the blue signal goes down to zero and the red and green remain constant. Combining the information obtained at this two applied voltages a RGB colour image picture can be acquired without the need of the usual colour filters or pixel architecture. A numerical simulation supports the colour filter analysis.
Resumo:
We report in this paper the recent advances we obtained in optimizing a color image sensor based on the laser-scanned-photodiode (LSP) technique. A novel device structure based on a a-SiC:H/a-Si:H pin/pin tandem structure has been tested for a proper color separation process that takes advantage on the different filtering properties due to the different light penetration depth at different wavelengths a-SM and a-SiC:H. While the green and the red images give, in comparison with previous tested structures, a weak response, this structure shows a very good recognition of blue color under reverse bias, leaving a good margin for future device optimization in order to achieve a complete and satisfactory RGB image mapping. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications. The physics behind the device functioning is explained by recurring to a numerical simulation of the internal electrical configuration of the device.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
A methodology of exploratory data analysis investigating the phenomenon of orographic precipitation enhancement is proposed. The precipitation observations obtained from three Swiss Doppler weather radars are analysed for the major precipitation event of August 2005 in the Alps. Image processing techniques are used to detect significant precipitation cells/pixels from radar images while filtering out spurious effects due to ground clutter. The contribution of topography to precipitation patterns is described by an extensive set of topographical descriptors computed from the digital elevation model at multiple spatial scales. Additionally, the motion vector field is derived from subsequent radar images and integrated into a set of topographic features to highlight the slopes exposed to main flows. Following the exploratory data analysis with a recent algorithm of spectral clustering, it is shown that orographic precipitation cells are generated under specific flow and topographic conditions. Repeatability of precipitation patterns in particular spatial locations is found to be linked to specific local terrain shapes, e.g. at the top of hills and on the upwind side of the mountains. This methodology and our empirical findings for the Alpine region provide a basis for building computational data-driven models of orographic enhancement and triggering of precipitation. Copyright (C) 2011 Royal Meteorological Society .