1000 resultados para Illinois Affordable Energy Campaign.
Resumo:
Illinois Lieutenant Governor Patrick Quinn responded to rising concerns about unaffordable energy for low-income Illinois residents by convening a meeting of advocates in January 2003, and challenging them to develop a better approach to energy assistance. As a result of that challenge, a working group of low-income advocates, energy policy advisors, researchers, and community leaders met and established the Illinois Affordable Energy Campaign (IAEC) to identify and recommend policy changes to the current Low Income Home Energy Assistance Program (LIHEAP). The Illinois LIHEAP program gives heating assistance to approximately 316,000 families across the state each year. This document the Affordable Energy Plan, is the result of this collaborative process. While the current LIHEAP program provides valuable and essential assistance to low-income families, the Affordable Energy Plan (AEP) improves the program design through a set of common sense reform measures that better address today's volatile energy environment. Reconstructing LIHEAP will make the program more efficient and effective; it will make energy more affordable for more LIHEAP customers; Illinois will see fewer homes disconnected from their utility services, and participants will be able to better understand and plan for their heating expenses.
Resumo:
Cover title.
Resumo:
Description based on: FY 82.
Resumo:
"Illinois Energy Conservation Program."
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
"April 1985."
Why Catalonia will see its energy metabolism increase in the near future: an application of MuSIASEM
Resumo:
This paper applies the so-called Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the economy of the Spanish region of Catalonia. By applying Georgescu-Roegen's fund-flow model, it arrives at the conclusion that within a context of the end of cheap oil, the current development model based on the growth of low productivity sectors such as services and construction must change. The change is needed not only because of the increasing scarcity of affordable energy carriers, or because of the increasing environmental impact that the present development represents, but also because of an ageing population that demands labour productivity gains. This will imply industry requiring more energy consumption per worker in order to increase its productivity, and therefore its competitiveness. Thus, we conclude that energy intensity, and exosomatic energy metabolism of Catalonia will increase dramatically in the near future unless major conservation efforts are implemented in both the household and transport sectors.
Resumo:
Iowa’s first annual Energy Independence Plan kicks off a new era of state leadership in energy transformation. Supported by Governor Chet Culver, Lieutenant Governor Patty Judge, and the General Assembly, the Office of Energy Independence was established in 2007 to coordinate state activities for energy independence. The commitment of the state to lead by example creates opportunities for state government to move boldly to achieve its goals, track its progress, measure the results, and report the findings. In moving to energy independence, the active engagement of every Iowan will be sought as the state works in partnership with others in achieving the goals. While leading ongoing efforts within the state, Iowa can also show the nation how to effectively address the critical, complex challenges of shifting to a secure energy future of affordable energy, cost-effective efficiency, reliance on sustainable energy, and enhanced natural resources and environment. In accordance with House File 918, “the plan shall provide cost effective options and strategies for reducing the state’s consumption of energy, dependence on foreign sources of energy, use of fossil fuels, and greenhouse gas emissions. The options and strategies developed in the plan shall provide for achieving energy independence from foreign sources of energy by the year 2025.” Energy independence is a term which means different things to different people. We use the term to mean that we are charting our own course in the emerging energy economy. Iowa can chart its own course by taking advantage of its resources: a well-educated population and an abundance of natural resources, including rich soil, abundant surface and underground water, and consistent wind patterns. Charting our own course also includes further developing our in-state industry, capturing renewable energy, and working toward improved energy efficiency. Charting our own course will allow Iowa to manage its economic destiny while protecting our environment, while creating new, “green collar” industries in every corner of Iowa. Today Iowa is in a remarkable position to capitalize on the current situation globally and at home. Energy drives the economy and has impacts on the environment, undeniable links that are integral for energy security and independence. With the resources available within the state, the combination of significant global changes in energy and research leading to new technologies that continue to drive down the costs of sustainable energy, Iowa can take bold strides toward the goal of energy independence by 2025. The Office of Energy Independence, with able assistance from hundreds of individuals, organizations, agencies, and advisors, presents its plan for Iowa’s Energy Independence.
Resumo:
Mode of access: Internet.
Resumo:
"ILENR/EC-93/01."
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
La recente Direttiva 31/2010 dell’Unione Europea impone agli stati membri di riorganizzare il quadro legislativo nazionale in materia di prestazione energetica degli edifici, affinchè tutte le nuove costruzioni presentino dal 1° gennaio 2021 un bilancio energetico tendente allo zero; termine peraltro anticipato al 1° gennaio 2019 per gli edifici pubblici. La concezione di edifici a energia “quasi” zero (nZEB) parte dal presupposto di un involucro energeticamente di standard passivo per arrivare a compensare, attraverso la produzione preferibilmente in sito di energia da fonti rinnovabili, gli esigui consumi richiesti su base annuale. In quest’ottica la riconsiderazione delle potenzialità dell’architettura solare individua degli strumenti concreti e delle valide metodologie per supportare la progettazione di involucri sempre più performanti che sfruttino pienamente una risorsa inesauribile, diffusa e alla portata di tutti come quella solare. Tutto ciò in considerazione anche della non più procrastinabile necessità di ridurre il carico energetico imputabile agli edifici, responsabili come noto di oltre il 40% dei consumi mondiali e del 24% delle emissioni di gas climalteranti. Secondo queste premesse la ricerca pone come centrale il tema dell’integrazione dei sistemi di guadagno termico, cosiddetti passivi, e di produzione energetica, cosiddetti attivi, da fonte solare nell’involucro architettonico. Il percorso sia analitico che operativo effettuato si è posto la finalità di fornire degli strumenti metodologici e pratici al progetto dell’architettura, bisognoso di un nuovo approccio integrato mirato al raggiungimento degli obiettivi di risparmio energetico. Attraverso una ricognizione generale del concetto di architettura solare e dei presupposti teorici e terminologici che stanno alla base della stessa, la ricerca ha prefigurato tre tipologie di esito finale: una codificazione delle morfologie ricorrenti nelle realizzazioni solari, un’analisi comparata del rendimento solare nelle principali aggregazioni tipologiche edilizie e una parte importante di verifica progettuale dove sono stati applicati gli assunti delle categorie precedenti
Resumo:
Low-carbon energy technologies are pivotal for decarbonising our economies up to 2050 while ensuring secure and affordable energy. Consequently, innovation that reduces the cost of low-carbon energy would play an important role in reducing transition costs. We assess the two most prominent innovation policy instruments (i) public research, development and demonstration (RD&D) subsidies and (ii) public deployment policies. Our results indicate that both deployment and RD&D coincide with increasing knowledge generation and the improved competitiveness of renewable energy technologies. We find that both support schemes together have a greater effect that they would individually, that RD&D support is unsurprisingly more effective in driving patents and that timing matters. Current wind deployment based on past wind RD&D spending coincides best with wind patenting. If we look into competitiveness we find a similar picture, with the greatest effect coming from deployment. Finally, we find significant cross-border effects, especially for winddeployment. Increased deployment in one country coincides with increased patenting in nearby countries. Based on our findings we argue that both deployment and RD&D support are needed to create innovation in renewable energy technologies. However, we worry that current support is unbalanced. Public spending on deployment has been two orders of magnitude larger (in 2010 about €48 billion in the five largest EU countries in 2010) than spending on RD&D support (about €315 million). Consequently, basing the policy mix more on empirical evidence could increase the efficiency of innovation policy targeted towards renewable energy technologies.
Resumo:
"Printed: December 1987."