992 resultados para Ici 118,551 hydrochoride (pubchem cid: 46704341)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that blockade of β-adrenoreceptors (β-AR) located in the temporomandibular joint (TMJ) of rats suppresses formalin-induced TMJ nociceptive behaviour in both male and female rats, but female rats are more responsive. In this study, we investigated whether gonadal hormones modulate the responsiveness to local β-blocker-induced antinociception in the TMJ of rats. Co-administration of each of the selective β1 (atenolol), β2 (ICI 118.551) and β3 (SR59230A)-AR antagonists with equi-nociceptive concentrations of formalin in the TMJ of intact, gonadectomized and hormone-treated gonadectomized male and female rats. Atenolol, ICI 118.551 and SR59230A significantly reduced formalin-induced TMJ nociception in a dose response fashion in all groups tested. However, a lower dose of each β-AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact and testosterone-treated gonadectomized male rats. In the female groups, a lower dose of β1 -AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact or gonadectomized rats treated with progesterone or a high dose of oestradiol; a lower dose of β2 -AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact and gonadectomized rats treated with low or high dose of oestradiol. Gonadal hormones may reduce the responsiveness to local β-blocker-induced antinociception in the TMJ of male and female rats. However, their effect depends upon their plasma level, the subtype of β-AR and the dose of β-blockers used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The goal of this study was to determine whether the cardiostimulant effects of the endogenous beta(1)-adrenergic receptor (AR) agonist, (-)-norepinephrine are modified by polymorphic (Serine49Glycine [Ser49Gly], Glycine389Arginine [Gly389Arg]) variants of beta(1)-ARs in the nonfailing adult human heart. BACKGROUND Human heart beta(1)-ARs perform a crucial role in mediating the cardiostimulant effects of (-)-norepinephrine. An understanding of the significance of Ser49Gly and Gly389Arg polymorphisms in the human heart is beginning to emerge, but not as yet in adult patients who have coronary artery disease (CAD). METHODS The potency and maximal effects of (-)-norepinephrine at beta(1)-ARs (in the presence of beta(2)-AR blockade with 50 nM ICI 118,551 [erythro-DL-1(7-methylindan-4-yloxy)-3-isopropylamino-butan-2-ol]) for changes in contractile force and shortening of contractile cycle duration were determined in human right atrium in vitro from 87 patients undergoing coronary artery bypass grafting who were taking beta-blockers before surgery. A smaller sample of patients (n = 20) not taking beta-blockers was also investigated. Genotyping for two beta(1)-AR polymorphisms (Ser49Gly and Gly389Arg) was determined from a sample of blood taken at the time of surgery. RESULTS (-)-Norepinephrine caused concentration-dependent increases in contractile force and reductions in time to reach peak force and time to reach 50% relaxation. There were no differences in the potency or maximal effects of (-)-norepinephrine in the right atrium from patients with different Ser49Gly and Gly389Arg polymorphisms. CONCLUSIONS The cardiostimulant effects of (-)-norepinephrine at beta(1)-ARs were conserved across Ser49Gly and Gly389Arg polymorphisms in the right atrium of nonfailing hearts from patients with CAD managed with or without beta-blockers. (C) 2002 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a small increase in the functional beta(2)-adrenoceptor response on the spontaneously hypertensive rat (SHR) left atrium in the early stages of hypertension. In the present study, the functional beta(1)- and beta(2)-adrenoceptors of the left and right atrium in SHR pre-hypertension and age-matched (5-week-old) Wistar Kyoto (WKY) rats were characterized. Contractility methods with isoprenaline, T-0509 (a selective beta(1)-adrenoceptor agonist) and procaterol (a selective beta(2)-adrenoceptor agonist) were used. At 5 weeks, the SHRs were pre-hypertensive. Isoprenaline was more potent on the left atrium of 5-week-old SHRs than WKY rats. Bisoprolol, a selective beta(1)-adrenoceptor antagonist, was more potent against isoprenaline and T-0509 on the SHR than WKY rat left atrium. ICI 118,551, a selective beta(2)-adrenoceptor antagonist, was more potent against procaterol and T-0509 on the SHR than WKY rat left atrium. The results with bisoprolol and ICI 118,551 suggest that there are more functional beta(1)- and beta(2)-adrenoceptors on the left atrium of 5-week-old SHRs than WKY rats. Isoprenaline, T-0509 and procaterol were equipotent on the right atrium of 5-week-old WKY rats and SHRs. Bisoprolol was more potent against isoprenaline, T-0509 and procaterol on the SHR than WKY rat right atrium. ICI 118,551 was more potent against T-0509, but not isoprenaline and procaterol, on the SHR than WKY rat left atrium. This suggests there are more functional beta(1)-adrenoceptors, and probably more functional beta(2)-adrenoceptors, on the right atrium of 5-week-old SHRs than WKY rats. These functional differences in beta(1)-and beta(2)-adrenoceptor-mediated responses of the left and right atria of pre-hypertensive SHRs cannot be caused by hypertension, and may be associated with the onset of hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported by U. Porto/Santander Totta (IJUP) (PP-IJUP2011-320)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The role of beta(2)-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours.2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective beta(2)-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP.3. The decrease in the rate of total protein degradation induced by 10(-5) M clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10(-5) M ICI 118.551, a selective beta(2)-antagonist.4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10(-4) M dibutyryl-cAMP or isobutylmethylxanthine.5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the alpha (1A)-, alpha (1B), beta (1),- and beta (2)-adrenoceptors of the lateral hypothalamus (LH) on the water and salt intake responses elicited by subfornical organ (SFO) injection of angiotensin II (ANG II) in rats. 5-methylurapidil (an alpha (1A)-adrenergic antagonist), cyclazosin (an alpha (1B)-adrenergic antagonist) and ICI-118,551 (a beta (2)-adrenergic antagonist) injected into the LH produced a dose-dependent reduction, whereas efaroxan (an alpha (2)-antagonist) increased the water intake induced by administration of ANG II into the SFO. These data show that injection of 5-methylurapidil into the LH prior to ANG II into the SFO increased the water and sodium intake induced by the injection of ANG II. The present data also show that atenolol (a beta (1)-adrenergic antagonist), ICI-118,551, cyclazosin, or efaroxan injected into the LH reduced in a dose-dependent manner the water and sodium intake to angiotensinergic activation of SFO. Thus, the alpha (1)- and beta -adrenoceptors of the LH are possibly involved with central mechanisms dependent on ANG II and SFO that control water and sodium intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was performed to characterize the beta-adrenoceptor population in rabbit isolated corpus cavernosum (RbCC) by using nonselective and selective beta-adrenoceptor agonists and antagonists in functional assays. Metaproterenol, ritodrine, fenoterol, and 8-hydroxy-5-[(1R)-1-hydroxy-2-[N-[(1R)-2-(rho-methoxy-phenyl)1-methylethyl] amino] ethyl] carbostyril (TA 2005) (3-100 nmol each) dose dependently relaxed the RbCC preparations. These relaxations were markedly reduced by N-omega-nitro-L-arginine methyl ester (L-NAME; 10 muM) and 1H-[1,2,4]-oxadiazolo-[4,3,-a]quinoxalin-1-one (ODQ) (10 muM), whereas the adenylyl cyclase inhibitor SQ 22,536 [9-(2-tetrahydrofuryl)adenine] (10 muM) had no effect. In contrast, neither L-NAME nor ODQ affected the isoproterenol-induced RbCC relaxations, but SQ 22,536 abolished this response. Sildenafil (1 muM) significantly potentiated the relaxations induced by beta(2)-agonists without affecting the isoproterenol-evoked relaxations. Rolipram (10 muM) enhanced the relaxations elicited by isoproterenol but had no effect on those induced by the selective beta(2) agonists. Propranolol and (+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanolhydrochloride (ICI 118,551) determined a rightward shift in the concentration-response curves to isoproterenol in a noncompetitive manner with a reduction of maximum response at the highest antagonist concentration, with the slope values significantly different from unity. Propranolol and ICI 118,551 had no effect on the relaxations elicited by fenoterol, TA 2005, metaproterenol, and ritodrine. Atenolol and 1-[2-((3-carbamoyl-4-hydroxy)phenoxy) ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)-phenoxy]2-propanol methanesulfonate (CGP 20712A) (0.1-10 muM) failed to affect the relaxations induced by all tested beta-adrenoceptor agonists. Our study revealed the existence of two atypical beta-adrenoceptors in the rabbit erectile tissue. Isoproterenol relaxes the rabbit cavernosal tissue by activating atypical beta-adrenoceptors coupled to adenylyl cyclase pathway, whereas the selective beta2-adrenoceptor agonists relax the RbCC tissue through another atypical beta-adrenoceptor subtype coupled to nitric oxide release from the sinusoidal endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Our main objectives were to investigate the affinity properties of endothelial and muscular α1D-adrenoceptors and to characterize the cross-talk between endothelial α1D- adrenoceptors and β2-adrenoceptors in rat carotid. Methods Relaxation and contraction concentration-response curves for phenylephrine (α1-adrenergic agonist) were obtained in carotid rings in absence or presence of increasing concentrations of BMY7378 (α 1D-adrenergic antagonist), combined or not with increasing concentration of ICI-118,551 (β2-adrenergic antagonist). Schild analysis was used to estimate the affinity constant from pA2 values of BMY7378. Key Findings BMY7378 produced an unsurmountable antagonism on phenylephrine-induced relaxation but a surmountable antagonism on phenylephrine-induced contraction. BMY7378 potency was higher in inhibiting the relaxation than the contraction induced by phenylephrine because the rightward shifts induced by BMY7378 were greater in the relaxation. The apparent pA 2 value for BMY7378 in phenylephrine-induced relaxation was greater than in contraction. When combined with ICI-118,551, BMY7378 yielded a surmountable antagonism on phenylephrine-induced relaxation and presented a pA2 value similar to that obtained in phenylephrine-induced contraction. Conclusions Endothelial α1D-adrenoceptors, which mediates rat carotid relaxation, present high ligand affinity because of the cross-talk with β2-adrenoceptors, which explains the higher potency of phenylephrine in inducing relaxation than contraction and the atypical unsurmountable antagonism produced by BMY7378 on phenylephrine-induced relaxation. © 2013 Royal Pharmaceutical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mirabegron is the first β3-adrenoceptor (AR) agonist approved for treatment of overactive bladder syndrome (OAB). This study aimed to investigate the effects of β3-adrenoceptor (AR) agonist mirabegron in mouse urethra. The possibility that mirabegron exerts α1-AR antagonism was also tested in rat smooth muscle preparations presenting α1A- (vas deferens and prostate), α1D- (aorta) and α1B-AR (spleen). Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs, as well as β-AR mRNA expression and cyclic AMP measurements in mouse urethra were performed. Mirabegron produced concentration-dependent urethral relaxations that were right shifted by the selective β3-AR antagonist L 748,337, but unaffected by β1- and β2-AR antagonists (atenolol and ICI 118,551, respectively). Mirabegron-induced relaxations were enhanced by the phosphodiesterase-4 inhibitor rolipram, and this agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1-AR agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1-AR in urethra, vas deferens and prostate (α1A-AR, pA2  ≅ 5.6) and aorta (α1D-AR, pA2  ≅ 5.4), but not in spleen (α1B-AR). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A- and α1D-ARs (pKi ≅ 6.0). The effects of mirabegron in urethral smooth muscle are the result of β3-AR agonism together with α1A / α1D-AR antagonism.