4 resultados para Ichthyochory
Resumo:
Fishes probably were the first vertebrate seed dispersers, yet little research has examined this phenomenon. We review evidence of fruit and seed consumption by fishes, and analyze the evolution of frugivory and granivory using South American serrasalmids as a model. Frugivory and granivory are observed among diverse fish taxa worldwide, although most reports are from the Neotropics. Frugivory and granivory among serrasalmids apparently are derived from omnivory, with powerful jaws and specialized dentition appearing as major adaptations. No particular fruit traits seem to be associated with seed dispersal by fishes (ichthyochory). Recent experimental evidence of ichthyochory suggests that fishes can influence riparian vegetation dynamics. Because of deleterious human impacts on aquatic ecosystems worldwide, many critical interactions between plants and fishes have been disrupted before they could be studied. Exotic frugivorous fishes have recently become established on foreign continents, with unknown ecological consequences.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fruit-eating by fishes represents an ancient (perhaps Paleozoic) interaction increasingly regarded as important for seed dispersal (ichthyochory) in tropical and temperate ecosystems. Most of the more than 275 known frugivorous species belong to the mainly Neotropical Characiformes (pacus, piranhas) and Siluriformes (catfishes), but cypriniforms (carps, minnows) are more important in the Holarctic and Indomalayan regions. Frugivores are among the most abundant fishes in Neotropical floodplains where they eat the fruits of a wide variety of trees and shrubs. By consuming fruits, fishes gain access to rich sources of carbohydrates, lipids and proteins and act as either seed predators or seed dispersers. With their often high mobility, large size, and great longevity, fruit-eating fishes can play important roles as seed dispersers and exert strong influences on local plant-recruitment dynamics and regional biodiversity. Recent feeding experiments focused on seed traits after gut passage support the idea that fishes are major seed dispersers in floodplain and riparian forests. Overfishing, damming, deforestation and logging potentially diminish ichthyochory and require immediate attention to ameliorate their effects. Much exciting work remains in terms of fish and plant adaptations to ichthyochory, dispersal regimes involving fishes in different ecosystems, and increased use of nondestructive methods such as stomach lavage, stable isotopes, genetic analyses and radio transmitters to determine fish diets and movements. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We studied the potential role as seed disperser of the pacu fish (Piaracrus mesopotamicus, Characidae) in the Pantanal of Brazil. The most important food item in the diet of the pacu in the wet season was fruits of the palm Bactris glaucescens found in the guts of 73 percent of all fishes collected (N = 70). We found a positive relationship between fish length, weight, and gape size and the number of intact seeds in their gut. Therefore, large pacus are especially important in dispersing B. glaucescens seeds within the studied system. Since the best seed dispersers are the largest fishes, which are preferred by commercial fisheries, we predict that the ongoing over fishing in freshwater ecosystems will have major impacts on the dispersal system of fish-dependent plants. We suggest that it is paramount to change the attitudes in fisheries management of fruit-eating fishes and urgent to evaluate the impact of fishing on forest regeneration.