984 resultados para Ice-binding proteins
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and - 3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P. J. Hudson. 2005. Nat. Biotechnol. 23: 1126-1136), and may be therapeutically useful as novel antiinflammatory agents in the future.
Speculations on the role of vitamin D and calcium-binding proteins in the aetiology of schizophrenia
Resumo:
We wished to identify the different types of retinal neurons on the basis of their content of neuroactive substances in both larval tiger salamander and mudpuppy retinas, favored species for electrophysiological investigation. Sections and wholemounts of retinas were labeled by immunocytochemical methods to demonstrate three calcium binding protein species and the common neurotransmitters, glycine, GABA and acetylcholine. Double immunostained sections and single labeled wholemount retinas were examined by confocal microscopy. Immunostaining patterns appeared to be the same in salamander and mudpuppy. Double and single cones, horizontal cells, some amacrine cells and ganglion cells were strongly calbindin-immunoreactive (IR). Calbindin-IR horizontal cells colocalized GABA. Many bipolar cells, horizontal cells, some amacrine cells and ganglion cells were strongly calretinin-IR. One type of horizontal cell and an infrequently occurring amacrine cell were parvalbumin-IR. Acetylcholine as visualized by ChAT-immunoreactivity was seen in a mirror-symmetric pair of amacrine cells that colocalized GABA and glycine. Glycine and GABA colocalized with calretinin, calbindin and occasionally with parvalbumin in amacrine cells. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.
Resumo:
Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology