946 resultados para IVREA ZONE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ivrea Zone in northern Italy has been the focus of numerous petrological, geochemical and structural studies. It is commonly inferred to represent an almost complete section through the mid to lower continental crust, in which metamorphism and partial melting of the abundant metapelites was the result of magmatic underplating by a large volume of mantle-derived magma. This study concerns amphibolite and granulite facies metamorphism in the Ivrea Zone with focus on metapelites and metapsammites/metagreywackes from Val Strona di Omegna and metapelites from Val Sesia and Val Strona di Postua, with the aim to better constrain their metamorphic evolution as well as their pressure and temperature conditions via phase equilibria modelling.rnrnIn Val Strona di Omegna, the metapelites show a structural and mineralogical change from mica-schists with the common assemblage bi-mu-sill-pl-q-ilm ± liq at the lowest grades, through metatexitic migmatites (g-sill-bi-ksp-pl-q-ilm-liq) at intermediate grades, to complex diatexitic migmatites (g-sill-ru-bi-ksp-pl-q-ilm-liq) at the highest grades. Within this section several mappable isograds occur, including the first appearance of K-feldspar in the metapelites, the first appearance of orthopyroxene in the metabasites and the disappearance of prograde biotite from the metapelites. The inferred onset of partial melting in the metapelites occurs around Massiola. The prograde suprasolidus evolution of the metapelites is consistent with melting via the breakdown of first muscovite then biotite. Maximum modelled melt fractions of 30–40 % are predicted at the highest grade. The regional metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of 3.5–6.5 kbar at T = 650–730 °C to P > 9 kbar at T > 900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher (around 100 °C) than those of most previous studies. In Val Sesia and Val Strona di Postua to the south the exposure is more restricted. P–T estimates for the metapelites are 750–850 °C and 5–6.5 kbar in Val Sesia and approximately 800–900 °C and 5.5–7 kbar in Val Strona di Postua. These results show similar temperatures but lower pressure than metapelites in Val Strona di Omegna. Metapelites in Val Sesia in contact with the Mafic Complex exhibit a metatexitic structure, while in Val Strona di Postua diatexitic structures occur. Further, metapelites at the contact with the Mafic Complex contain cordierite (± spinel) that overprint the regional metamorphic assemblages and are interpreted to have formed during contact metamorphism related to intrusion of the Mafic Complex. The lower pressures in the high-grade rocks in Val Sesia and Val Strona di Postua are consistent with some decompression from the regional metamorphic peak prior to the intrusion of the Mafic Complex, suggesting the rocks followed a clockwise P–T path. In contrast, the metapelites in Val Strona di Omegna, especially in the granulite facies, do not contain any cordierite or any evidence for a contact metamorphic overprint. The extrapolated granulite facies mineral isograds are cut by the rocks of the Mafic Complex to the south. Therefore, the Mafic Complex cannot have caused the regional metamorphism and it is unlikely that the Mafic Complex occurs in Val Strona di Omegna.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Ivrea and the Strona-Ceneri zones, NW italy and S Switzerland, offer the possibility to study the continental crust of the Southern Alps. Because of its high metamorphic degree and the abundant Permo- Carboniferous mafic intrusions, the Ivrea Zone is classically interpreted an exposed section trough the Permian lower crust. The present work is focused here on metasedimentary slices (septa) intercalated within Permian gabbro (mafic complex). In particular I studied the evolution of accessory phases such as rutile and zircon and the chemistry of the metasediments. The septa build an irregular and discontinuous band that cut obliquely the mafic complex from its deepest part (N) to its roof (S). The chemistry of the metasediments evolves along the band and the chemical evolution can be compared with that observed in the country-rock surrounding the mafic intrusion to the NE and overprinted by a main regional metamorphic event. This suggests that the degree of chemical depletion of the septa was mainly established during the same regional metamorphic event. Moreover it suggests that incorporation of the septa within the gabbro did not modify their original stratigraphie distribution within the crust. It implies that the mafic complex has been emplaced following a dynamic substantially different from the classic model of « gabbro glacier » (Quick et al., 1992; Quick et al., 1994). It is more likely that it has been emplaced by repeated injections of sills at different depths during a protracted period of time. Zircon trace elements and U-Pb ages suggest that regional metamorphism occurred 330-320Ma, the first sills in the deepest part of the Mafic Complex are injected at ~300Ma, the mafic magmas reached higher levels in the crust at 285Ma and the magmatic activity continued locally until 275Ma. The ages of detrital cores in zircons fix the maximal sedimentation age at ~370Ma, this age corresponds therefore with the maximal age of the incorporation of the Ivrea zone within the lower crust. I propose that the Ivrea zone has been accreted to the lower crust during the Hercynian orogeny sensu lato. The analysis of detrital ages suggests that the source terrains for the Ivrea zone and those for the Strona-Ceneri zone have a completely different Palaeozoic history. The systematic analysis of rutile in partially molten metasediments of the Ivrea zone reveals the occurrence of two generations. The two generations are characterized by a different chemistry and textural distribution. A first generation is formed during pro-grade metamorphism in the restitic counterpart. The second generation is formed in the melts during cooling at the same time that part of the first generation re-equilibrate. Re-equilibration of the first generation seems to be spatially controlled by the presence of fluids. Locally the second generation forms overgrowths on the first generation. Considered the different diffusivity of U and Pb in rutile, U heterogeneities have important implication for U-Pb dating of rutile. ID-TIMS and LA-ICPMS dating coupled with a careful textural investigation (SEM) suggest that rutile grains are characterized by multiple path along which Pb diffusion can occur: volume diffusion is an important process, but intragrain and subgrain boundaries provide additional high diffusivity pathways for Pb escape and reduce drastically the effective diffusion length. -- La zone d'Ivrea et la zone de Strona-Ceneri, en Italie nord-occidentale et Suisse méridionale, offrent la possibilité d'étudier la croûte continentale des Alpes du Sud. En raison du haut degré métamorphique et l'abondance d'intrusions mafiques d'âge Permo-Carbonifère [complexe mafique), la zone d'Ivrea est interprétée classiquement comme de la croûte inférieure permienne. Ce travail ce concentre sur des bandes metasédimentaires (septa) incorporées dans les magmas mafiques lors de l'intrusion. Les septa forment une bande irrégulière qui coupe obliquement le complexe mafique du bas (N) vers le haut (S). La chimie des septa évolue du bas vers le haut et l'évolution chimique se rapproche de l'évolution observé dans la roche encaissante l'intrusion affecté par un événement métamorphique régionale. Cette relation suggère que le degré d'appauvrissement chimique des septa a été établit principalement lors de l'événement métamorphique régional. De plus l'incorporation dans les gabbros n'a pas perturbée la distribution stratigraphique originelle des septa. Ces deux observations impliquent que le métamorphisme dans la roche encaissante précède la mise en place du gabbro et que cette dernière ne se fait pas selon le modèle classique (« gabbro glacier » de Quick et al., 1992, 1994), mais se fait plutôt par injections répétées de sills a différentes profondeurs. Les âges U-Pb et les éléments traces des zircons suggèrent que le métamorphisme régionale a eu lieu 330-320Ma, alors que les premiers sills dans la partie profonde du Mafic Complex s'injectent à ~300Ma, le magmatisme mafique atteigne des niveaux supérieurs à 285Ma et continue localement jusqu'à 270Ma. Les âges des coeurs détritiques des zircons permettent de fixer l'âge maximale de sédimentation à ~370Ma ce qui correspond donc à l'âge maximale de l'incorporation de la zone d'Ivrea dans la croûte inférieur. L'analyse systématique des rutiles, nous a permit de montrer l'existence de plusieurs générations qui ont une répartition texturale et une chimie différente. Une génération se forme lors de l'événement UHT dans les restites, une autre génération se forme dans les liquides lors du refroidissement, au même temps qu'une partie de la première génération se rééquilibre au niveau du Zr. Localement la deuxième génération peut former des surcroissances autour de la première génération. Dans ces cas, des fortes différences en uranium entre les deux générations ont des importantes implications pour la datation U-Pb sur rutile. Classiquement les ratios Pb/U dans le rutile sont interprétés comme indiquant l'âges du refroidissement du minéral sous une température à la quelle la diffusion du Pb dans le minéral n'est plus détectable et la diffusion à plus hautes températures est assumée se faire par «volume diffusion» dans le grain (Mezger et al., 1989). Par des datations ID-TIMS (sur grain entier) et LA-ICPMS (in-situ) et une analyse texturale (MEB) approfondie nous montrons que cette supposition est trop simpliste et que le rutile est repartie en sous-domaines. Chacun de ces domaines a ça propre longueur ou chemin de diffusion spécifique. Nous proposons donc une nouvelle approche plus cohérente pour l'interprétation des âges U-Pb sur rutile.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Ivrea–Verbano Zone (IVZ), northern Italy, exposes an attenuated section through the Permian lower crust that records high-temperature metamorphism under lower crustal conditions and a protracted history of extension and exhumation associated partly with the Jurassic opening of the Alpine Tethys ocean. This study presents SHRIMP U–Pb geochronology of rutile from seven granulite facies metapelites from the base of the IVZ, collected from locations spanning ~35 km along the strike of Paleozoic fabrics. Rutile crystallised during Permian high-temperature metamorphism and anatexis, yet all samples give Jurassic rutile U–Pb ages that record cooling through 650–550 °C. Rutile age distributions are dominated by a peak at ~160 Ma, with a subordinate peak at ~175 Ma. Both ~160 and ~175 Ma age populations show excellent agreement between samples, indicating that the two distinctive cooling stages they record were synchronous on a regional scale. The ~175 Ma population is interpreted to record cooling in the footwall of rift-related faults and shear zones, for which widespread activity in the Lower Jurassic has been documented along the western margin of the Adriatic plate. The ~160 Ma age population postdates the activity of all known rift-related structures within the Adriatic margin, but coincides with extensive gabbroic magmatism and exhumation of sub-continental mantle to the floor of the Alpine Tethys, west of the Ivrea Zone. We propose that this ~160 Ma early post-rift age population records regional cooling following episodic heating of the distal Adriatic margin, likely related to extreme lithospheric thinning and associated advection of the asthenosphere to shallow levels. The partial preservation of the ~175 Ma age cluster suggests that the post-rift (~160 Ma) heating pulse was of short duration. The regional consistency of the data presented here, which is in contrast to many other thermochronometers in the IVZ, demonstrates the value of the rutile U–Pb technique for probing the thermal evolution of high-grade metamorphic terrains. In the IVZ, a significant decoupling between Zr-in-rutile temperatures and U–Pb ages of rutile is observed, with the two systems recording events ~120 Ma apart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permo-Mesozoic Canavese sediments are pinched in between the pre-Alpine high-grade metamorphic Ivrea Zone and the Alpine metamorphosed Sesia Zone along the Insubric Line W of Locarno. According to the ``illite crystallinity'' these sediments were deformed under anchi- and epizonal conditions. Synkinematically formed white mica in the mylonitized Canavese sediments yields the following K-Ar age ranges: 60-76 Ma at the southwestern end, 28-43 Ma in the central part and 19-26 Ma in the northeastern part of the Insubric Line W of Locarno. The youngest age group dates the main uplift and dextral strike-slip movements of the Insubric Line, comprising mylonites in the NE and cataclasites in the SW. This activity correlates with Late Oligocene to Early Miocene rapid cooling and uplift of the Central Alps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forty-two new apatite and zircon fission track ages are presented for samples from the Western Alps in southern Switzerland, northern Italy, and southeastern France. Measured ages plotted against assumed closure temperatures yield cooling patterns for the final cooling, uplift, and exhumation of the Western Alps. Similar fission track zircon ages in the Penninic Gran Paradiso massif, Dent Blanche nappe, Sesia-Lanzo Zone, and Ivrea Zone indicate cooling of all four units to approximately 225-degrees-C by 33 Ma. Differences in apatite ages reveal differential cooling of the four blocks between 33 Ma and the present. In the Sesia-Lanzo Zone, similarity of apatite ages regardless of elevation, together with near-volcanic confined fission track length patterns suggest rapid cooling and uplift at approximately 25 Ma compared with slow cooling of other Western Alps units around 12 Ma. Uplift is thus not continuous but episodic, often over a short time interval beyond the resolution of other methods. Such episodes of uplift, as revealed here in the Sesia-Lanzo Zone, may be the rule rather than the exception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650–700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the lowermost part of the Ivrea Zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Niquelandia Complex, Brazil, is one of the world's largest mafic-ultramafic plutonic complexes. Like the Mafic Complex of the Ivrea-Verbano Zone, it is affected by a pervasive high-T foliation and shows hypersolidus deformation structures, contains significant inclusions of country-rock paragneiss, and is subdivided into a Lower and an Upper Complex. In this paper, we present new SHRIMP U-Pb zircon ages that provide compelling evidence that the Upper and the Lower Niquelandia Complexes formed during the same igneous event at ca. 790 Ma. Coexistence of syn-magmatic and high-T subsolidus deformation structures indicates that both complexes grew incrementally as large crystal mush bodies which were continuously stretched while fed by pulses of fresh magma. Syn-magmatic recrystallization during this deformation resulted in textures and structures which, although appearing metamorphic, are not ascribable to post-magmatic metamorphic event(s), but are instead characteristic of the growth process in huge and deep mafic intrusions such as both the Niquelandia and Ivrea Complexes. Melting of incorporated country-rock paragneiss continued producing hybrid rocks during the last, vanishing stages of magmatic crystallization. This resulted in the formation of minor, late-stage hybrid rocks, whose presence obscures the record of the main processes of interaction between mantle magmas and crustal components, which may be active at the peak of the igneous events and lead to the generation of eruptible hybrid magmas. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.