905 resultados para IT-supported field data management
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
The Queensland University of Technology (QUT) Library, like many other academic and research institution libraries in Australia, has been collaborating with a range of academic and service provider partners to develop a range of research data management services and collections. Three main strategies are being employed and an overview of process, infrastructure, usage and benefits is provided of each of these service aspects. The development of processes and infrastructure to facilitate the strategic identification and management of QUT developed datasets has been a major focus. A number of Australian National Data Service (ANDS) sponsored projects - including Seeding the Commons; Metadata Hub / Store; Data Capture and Gold Standard Record Exemplars have / will provide QUT with a data registry system, linkages to storage, processes for identifying and describing datasets, and a degree of academic awareness. QUT supports open access and has established a culture for making its research outputs available via the QUT ePrints institutional repository. Incorporating open access research datasets into the library collections is an equally important aspect of facilitating the adoption of data-centric eresearch methods. Some datasets are available commercially, and the library has collaborated with QUT researchers, in the QUT Business School especially strongly, to identify and procure a rapidly growing range of financial datasets to support research. The library undertakes licensing and uses the Library Resource Allocation to pay for the subscriptions. It is a new area of collection development for with much to be learned. The final strategy discussed is the library acting as “data broker”. QUT Library has been working with researchers to identify these datasets and undertake the licensing, payment and access as a centrally supported service on behalf of researchers.
Resumo:
QUT Library Research Support has simplified and streamlined the process of research data management planning, storage, discovery and reuse through collaboration and the use of integrated and tailored online tools, and a simplification of the metadata schema. This poster presents the integrated data management services a QUT, including QUT’s Data Management Planning Tool, Research Data Finder, Spatial Data Finder and Software Finder, and information on the simplified Registry Interchange Format – Collections and Services (RIF-CS) Schema. The QUT Data Management Planning (DMP) Tool was built using the Digital Curation Centre’s DMP Online Tool and modified to QUT’s needs and policies. The tool allows researchers and Higher Degree Research students to plan how to handle research data throughout the active phase of their research. The plan is promoted as a ‘live’ document’ and researchers are encouraged to update it as required. The information entered into the plan can be made private or shared with supervisors, project members and external examiners. A plan is mandatory when requesting storage space on the QUT Research Data Storage Service. QUT’s Research Data Finder is integrated with QUT’s Academic Profiles and the Data Management Planning Tool to create a seamless data management process. This process aims to encourage the creation of high quality rich records which facilitate discovery and reuse of quality data. The Registry Interchange Format – Collections and Services (RIF-CS) Schema that is used in the QUT Research Data Finder was simplified to “RIF-CS lite” to reflect mandatory and optional metadata requirements. RIF-CS lite removed schema fields that were underused or extra to the needs of the users and system. This has reduced the amount of metadata fields required from users and made integration of systems a far more simple process where field content is easily shared across services making the process of collecting metadata as transparent as possible.
Resumo:
Bycatch, or the incidental catch of nontarget organisms during fi shing operations, is a major issue in U.S. shrimp trawl fisheries. Because bycatch is typically discarded at sea, total bycatch is usually estimated by extrapolating from an observed bycatch sample to the entire fleet with either mean-per-unit or ratio estimators. Using both field observations of commercial shrimp trawlers and computer simulations, I compared five methods for generating bycatch estimates that were used in past studies, a mean-per-unit estimator and four forms of the ratio estimator, respectively: 1) the mean fish catch per unit of effort, where unit effort was a proxy for sample size, 2) the mean of the individual fish to shrimp ratios, 3) the ratio of mean fish catch to mean shrimp catch, 4) the mean of the ratios of fish catch per time fished (a variable measure of effort), and 5) the ratio of mean fish catch per mean time fished. For field data, different methods used to estimate bycatch of Atlantic croaker, spot, and weakfish yielded extremely different results, with no discernible pattern in the estimates by method, geographic region, or species. Simulated fishing fleets were used to compare bycatch estimated by the fi ve methods with “actual” (simulated) bycatch. Simulations were conducted by using both normal and delta lognormal distributions of fish and shrimp and employed a range of values for several parameters, including mean catches of fish and shrimp, variability in the catches of fish and shrimp, variability in fishing effort, number of observations, and correlations between fish and shrimp catches. Results indicated that only the mean per unit estimators provided statistically unbiased estimates, while all other methods overestimated bycatch. The mean of the individual fish to shrimp ratios, the method used in the South Atlantic Bight before the 1990s, gave the most biased estimates. Because of the statistically significant two- and 3-way interactions among parameters, it is unlikely that estimates generated by one method can be converted or corrected to estimates made by another method: therefore bycatch estimates obtained with different methods should not be compared directly.
Resumo:
Görzig, H., Engel, F., Brocks, H., Vogel, T. & Hemmje, M. (2015, August). Towards Data Management Planning Support for Research Data. Paper presented at the ASE International Conference on Data Science, Stanford, United States of America.
Resumo:
Climate-G is a large scale distributed testbed devoted to climate change research. It is an unfunded effort started in 2008 and involving a wide community both in Europe and US. The testbed is an interdisciplinary effort involving partners from several institutions and joining expertise in the field of climate change and computational science. Its main goal is to allow scientists carrying out geographical and cross-institutional data discovery, access, analysis, visualization and sharing of climate data. It represents an attempt to address, in a real environment, challenging data and metadata management issues. This paper presents a complete overview about the Climate-G testbed highlighting the most important results that have been achieved since the beginning of this project.
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
This research contributes to the field of customer equity by examining how important the strategy drivers of consumption and customer data management are in contributing to the value of the customer asset. A mixed methods approach focused on one sector: the Australian accommodation hotels. From this research, a deeper understanding of how to theorise, conceptualise and practice customer equity management has been achieved.
Resumo:
BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Workshop Research Data Management – Activities and Challenges 14-15 November 2011, Bonn The Knowledge Exchange initiative organised a workshop to highlight current activities and challenges with respect to research data management in the Knowledge Exchange partner countries and beyond. The workshop brought together experts from data centres, libraries, computational centres, funding organisations, publishing services and other institutions in the field of research and higher education who are working to improve research data management and encourage effective reuse of research data. A considerable part of the programme was dedicated to sharing perspectives from these communities, leading to the development of a roadmap of practical actions for the Knowledge Exchange initiative, partner organisations and other stakeholders to progress over the next two years. On the first day, principal investigators and project managers from a great variety of recent projects shared their insights on objectives and methods for improving data management ranging from discipline-specific to more general approaches. A series of short presentations of selected projects was followed by an extensive poster session that functioned as a “trade fair” of current trends and activities in the field of research data management. Moreover, the poster session offered ample network opportunities for participants. The second day was dedicated to intensive group discussions looking at a number of data management challenges. First the most important findings from the "Surfboard for 'Riding the Wave'" report were presented. This included the state of the art on activities and challenges in the field of research data management. The subgroups will concentrate on the following key themes: funding, incentives, training and technical infrastructure. These discussions culminated in the identification of practical recommendations for future cooperation on practical as well as on strategic levels that should be taken forward by the KE partner organisations and beyond. These activities aim to improve the sustainability of services and infrastructures at both national and international levels.