971 resultados para ISOTHERMAL CRYSTALLIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the isothermal crystallization kinetics of polypropylene (iPP) during self-nucleation was studied by means of differential scanning calorimetry(DSC). The iPP was melted at 438 K and then isothermally crystallized in the range of temperature between 421 and 425 K. The mechanism of nucleation and growth of iPP was discussed. The Avrami equation was applied to analyzing the process of isothermal crystallization of iPP from the melt. The average value of Avrami exponent is n=3.01, suggesting that the primary crystallization maybe corresponds to three-dimensional spherulitic growth. The K-g value obtained from Lauritzen-Hoffman equation is 1.128 X 10(5) K-2, which suggests that crystallization species should be regime I. The decrease of crystallization active energy and chain folding work indicates that the self-nucleation can greatly promote the overall crystallization of iPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of neat PPS and PPS in blends with PMR-POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-isothermal crystallization behavior and kinetics of metallocene short chain branched polyethylene were investigated via DSC at cooling rates from 2.5 to 20 degreesC/min, and subsequent heating at rate of 10 degreesC/min. To verify the effect of molecular weight and branching content on crystallization, three group samples were chosen: (1) linear polyethylene with low molecular weight and high molecular weight; (2) low molecular weight polyethylene with low branching content and high branching content; (3) high molecular weight polyethylene with low branching content and high branching content. The results show that crystallization temperature, crystallinity, melting temperature and crystallization rate are highly branching content-dependent. Molecular weight effect is less important, compared to branching content. A dramatic decrease of crystallization temperature, crystallinity, crystallization rate and melting temperature was observed for branched samples. The non-isothermal kinetics was analyzed via the methods, developed by Gupta and Mo Zhi-shen, and good agreement was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB) and maleated PHB with different graft degree were studied by using differential scanning calorimetry (DSC). The Avrami analysis indicates that the introduction of maleic anhydride results in the decrease in the overall crystallization rate of PHB, but does not affect its nucleation mechanism and geometry of crystal growth. The activation energy of the overall crystallization process increases with the increase in graft degree. The phenomenon of multiple melting endotherms is observed, which results from melting and recrystallization during the DSC heating run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of PHBV, poly(beta -hydroxybutyrate-co-beta -hydrxyvalerate), with nucleating agents under isothermal conditions was investigated. A differential scanning calorimeter was used to monitor the crystallization process from the melt. During isothermal crystallization, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of BN and Tale causes a considerable increase in the overall crystallization rate of PHBV but does not influence the Avrami exponent n, mechanism of nucleation and spherulite growth mode of PHBV. A little of nucleating agent will increase the crystallization rate and decrease the fold surface free energy sigma (e), remarkably. The effect of BN is more significant than that of Talc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the data obtained from Differential Scanning Calorimetry (DSC),the method of Jeziorny, BOPOXOBCKHH and a new approach proposed by our laboratry are applied to study the nonisothermal crystallization behavior of poly( 3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT),and Kissinger method is used to get the value of the crystallization activation energy. The effect of the different alkyl substitution on crystallization is also investigated. In comparison to the methods of Jeziorny and BOPOXOBCKHH in which it can be found that the deviation from the line occurs in the later stage of crystallization, the new approach appears applicable due to the better linear relation. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.78kJ/mol and 246.93kJ/mol, respectivley, which implies that it is easiser to crystallize P3DDT than P3ODT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal and non-isothermal crystallization kinetics of a syndiotactic polypropylene(sPP) sample synthesized by new metallocene catalyst at different annealing temperatures and different cooling rates have been investigated by using differential scanning calorimetry(DSC) and density analysis. The equilibrium melting temperature( T-m(0)) is 158 degrees C by Hoffman-Weeks method. The equilibrium heat of fusion(Delta H-m(0)) is 88J/g in terms of the density analysis and DSC methods. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 5.2erg/cm(2) and sigma(e) = 69erg/cm(2), respectively. The work of chain folding is determined to be q = 33.75kJ/mol. Modified Avrami equation and Ozawa equation can be used to describe the non-isothermal crystallization behavior. And a new and convenient approach by combining the Avrami equation and Ozawa equation in a same crystallinity is used to describe the non-isothermal behavior as well. The crystallization activation energies are evaluated to be 73.7kJ/mol and 73.1kJ/mol for isothermal crystallization and non-isothermal crystallization, respectively. The Avrami exponent n is 1.5 similar to 1.6 for isothermal crystallization procedure, while the Avrami exponent n,is 2.5 similar to 3.5 for non-isothermal crystallization procedure. This indicated the difference of nucleation and growth between the two procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.