402 resultados para ISOTACTIC-POLYPROPYLENE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally friendly molybdenum disulfide (INT-MoS2) inorganic nanotubes were introduced into an isotactic polypropylene (iPP) polymer matrix to generate novel nanocomposite materials through an advantageous melt-processing route. The effects of INT-MoS2 content on the thermal, mechanical and tribological properties were investigated. The incorporation of INT-MoS2 generates notable performance enhancements through reinforcement effects, highly efficient nucleation activity and excellent lubricating ability in comparison with other nanoparticle fillers such as nanoclays, carbon nanotubes, silicon nitrides and halloysite nanotubes. It was shown that these INT-MoS2 nanocomposites can provide an effective balance between performance, cost effectiveness and processability, and should be of some interest in the area of multifunctional polymer nanocomposite materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxide-mediated reactive extrusion of linear isotactic polypropylene (L-PP) was conducted in the presence of trimethylolpropane trimethacrylate (TMPTMA) and triallyl trimesate (TAM) coagents, using a twin screw extruder. The resulting coagent-modified polypropylenes (CM-PP) had higher viscosities and elasticities, as well as increased crystallization temperature compared to PP reacted only with peroxide (DCP-PP). Additionally, deviations from terminal flow, and strain hardening were observed in PP modified with TAM, signifying the presence of long chain branching (LCB). The CM-PP formulations retained the modulus and tensile strength of the parent L-PP, in spite of their lower molar mass and viscosities, whereas their elongation at break and the impact strength were better. This was attributed to the finer spherulitic structure of these materials, and to the disappearance of the skin-core layer in the injection molded specimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interaction of ionising radiation with polymers is described and the literature relating; to the effects on polypropylene is reviewed. Oxidative and free radical reactions are discussed with particular reference to post-irradiationeffects.Isotactic and atactic polypropylene were δ and electron irradiated to doses of up to 20 megarad. Irradiations weremainly made in air. A series of other polymers were also irradiated in a preliminary survey. Molar mass measurements are used to measure the radiationyield for chain scission G (s). Irradiation at room temperature causes significantly more chain scission than at 195K. Additional chain scission occurs on storage following irradiation at 195 K. Free radical concentrations are determined by electron spin resonance, and the decay rates measured. The radical formed in air is a peroxy radical and in vacuo is a hydrocarbon radical. At77K in vacuo the radical is -CH2 - C* (CH3) - CH2 - but additional radicals are produced on warning to room temperature. The effects of increasing tenparature on radicals formed in air are described. Electron spin resonance studies on atactic polypropylene,and isotactic polypropylene in hydrogen, sulphur dioxide and nitric oxide are reported.. The melting temperatures, spherulite growth rates, and isothermal crystallisation rates of irradiated polypropylene are compared to those of the non-irradiated polymer. Crystallisation is found to proceed with an Avrami integer n = 2. At a given crystallisation temperature, the overall crystallisation rate of irradiated polymer is less than the non-irradiated, but spherulite growth rates are identical. Thermogravimetric analysis is used to assess the thermal stability of irradiated polypropylene in nitrogen, air and oxygen. Hydroperoxide analysis is used to show that several molecules of oxygen are absorbed for each initial radical, and that hydroperoxides continue to be formed for a long period following irradiation. Possible solutions for minimising irradiation and post-irradiation degradation are suggested, together with some problems for further study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxide-mediated reactive extrusion of linear isotactic polypropylene (L-PP) was conducted in the presence of trimethylolpropane trimethacrylate (TMPTMA) and triallyl trimesate (TAM) coagents, using a twin screw extruder. The resulting coagent-modified polypropylenes (CM-PP) had higher viscosities and elasticities, as well as increased crystallization temperature compared to PP reacted only with peroxide (DCP-PP). Additionally, deviations from terminal flow, and strain hardening were observed in PP modified with TAM, signifying the presence of long chain branching (LCB). The CM-PP formulations retained the modulus and tensile strength of the parent L-PP, in spite of their lower molar mass and viscosities, whereas their elongation at break and the impact strength were better. This was attributed to the finer spherulitic structure of these materials, and to the disappearance of the skin-core layer in the injection molded specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Polymerisation in nicht-wässrigen Emulsionen – bestehend aus einem perfluorierten Solvens und einem Kohlenwasserstoff - unter Einsatz verschiedener Monomere, Katalysatoren und Polymeristionsmethoden zur Generierung von Polymerpartikeln verschiedenster Art. Es wurde gezeigt, dass in diesen inerten Medien zahlreiche Methoden zur Polymererzeugung unter gleichzeitiger Morphologiekontrolle eingesetzt werden können, die in konventionellen wässrigen, heterophasischen Systemen versagen.rnrnAusgangspunkt war die literaturbekannte Metallocen-katalysierte Synthese von Polyethylen (PE)- und Polypropylen (PP)-Nanopartikeln in perfluorierter Emulsion in Gegenwart hochmolekularer Blockcopolymere als Stabilisierungsagens. Mithilfe kinetischer Untersuchungen hinsichtlich der PE-Synthese wurde im Rahmen dieser Arbeit ein Modell entwickelt, welches den Diffusionsweg eines gasförmigen Monomers über die verschiedenen Phasengrenzen hinweg zum aktiven katalytischen Zentrum in der dispergierten Phase beschreibt. Ferner konnte die Diffusions- und Reaktionsbestimmtheit der Reaktion in Abhängigkeit verschiedener Reaktionsparameter nachgewiesen sowie ein tieferer Einblick über den Ort der Polymerisation in den heterophasischen Systemen erhalten werden.rnrnDie so gewonnenen Erkenntnisse wurden für die erfolgreiche Synthese von Poly(ethylen-1-hexen)-Copolymeren in perfluorierter Emulsion genutzt, wobei der Comonomergehalt im resultierenden Polymer über einen breiten Bereich variiert werden konnte. Neben der Homo- und Copolymerisation von Polyolefinen wurde in der vorliegenden Arbeit weiter gezeigt, dass die heterogenen Fluide zum Aufbau komplexerer Morphologien wie Kern-Schale-Nanopartikeln genutzt werden können; so gelangte man zu Partikeln mit Kernen aus isotaktischem PP, ummantelt von „weichem“ Poly(n-butylacrylat).rnrnEin weiterer Fokus dieser Arbeit lag auf der Erweiterung der Anwendungsmöglichkeiten der perfluorierten Emulsionen, und so wurde bspw. der Zugang zu Polymerdispersionen aus konjugierten Materialien mit Partikeldurchmessern von 70-100 nm mittels Cyclopolymerisation eröffnet. Ferner konnten als bioverträgliche und biologisch abbaubare Materialien Partikel aus epsilon-Caprolacton in koordinativ-anionischer Polymerisation gewonnen werden. Im Zuge dessen wurden Emulgatoren entwickelt, die den Einsatz polarer Monomere in perfluorierter Emulsion erlauben.rnrnSchlussendlich konnten mittels trifunktioneller Polymere mit lipophilen und fluorophilen Gruppen sowie Lewis-basischen Ankergruppen Ag- und Cu-Partikel dergestalt oberflächenmodifiziert werden, dass ein homogenes Einbetten in eine perfluorierte Matrix möglich war, was antibakterielle perfluorierte Werkstoffe - erwiesen an E. coli - lieferte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radiolysis of a poly(ethylene-co-propylene), Elpro, marketed by Thai Polypropylene Co. Ltd for the manufacture of medical goods has been investigated at 77 K. Calcium stearate was blended with the Elpro as a processing aid; and dioctyl phthalate, DOP, was added in various amounts as a radiation stabilizer. The ESR spectra of Elpro and Elpro+Ca were very similar and characterized principally by the presence of PP a-carbon radicals. The spectra of the samples containing DOP were similar to those for Elpro but with an additional narrow singlet arising from DOP radicals. On annealing the irradiated polymers to higher temperatures, the singlet was lost between 250 and 270 K, and at room temperature the principal radicals remaining were allyl radicals. The G-values for radical formation at 77 K for Elpro and Elpro+Ca at 77 K were 3.0 and 3.2, respectively, but incorporation of DOP resulted in lower G-values, ranging from 1.6 to 1.4 for 0.5 and 2.5 phr DOP, respectively.(c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate an experimental animal model to study the abdominal tissue activity considering its interaction with a polypropylene mesh, through the use of one of the optical phenomena of light Laser, the biospeckle. METHODS: Fifty Wistar male rats were divided into four groups: Group 1: ten animals not submitted to surgery; Group 2: ten animals submitted to surgery without polypropylene mesh; Group 3: 20 animals submitted to surgery followed by the mesh placement; Group 4: (sham) with ten animals. None of the animals presented post surgical complications being submitted to the optical tests at the 20th postoperative day. RESULTS: The analysis from the biospeckle tests, comparing the medians and standard deviations with T Student test, indicated that no significative difference was observed on the abdominal wall tissue activity in the four groups considered, with and without polypropylene mesh prosthesis implantation. CONCLUSION: The animal model is viable and the biospeckle open ways for a great number of experiments to be developed in evaluating tissue activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, composites from polypropylene and Kraft pulp (from Pinus radiata) were prepared. Phenyl isocyanate, unblocked and phenol blocked derivatives of 4,4`-methylenebis (phenyl isocyanate) (MDI) were used as coupling agents and the mechanical properties of the obtained composites analyzed. The results showed that the addition of such compatibilizers readily improved the tensile and flexural strengths of the composites. However, no significant variation in the mechanical properties was observed for composite formulations comprising different isocyanate compounds. Accordingly, the chemical structure of isocyanate derivatives did not affect extensively the mechanical properties of MDI-coupled pine fiber reinforced composites. These results were similar to those obtained in previous studies regarding the efficiency of organosilane coupling agents. In comparison to monoreactive isocyanates, the addition of MIDI increased considerably the mechanical properties of pine fiber-polypropylene composites. The mechanical anchoring of polymeric PP chains onto the irregular reinforcement surface supported this result. Non-isothermal DSC analysis showed a slowing effect of MDI on the crystallization kinetics of the coupled composites. This may have been the result of diminished polymer chain mobility in the matrix due to mechanical anchoring onto the fiber surface. Considering these results, the occurrence of strong bonds between the composite components was stated, rather than the unique existence of Van der Waals interactions among the non-polar structures. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies using vegetable fibers as the exclusive reinforcement in fiber-cement composites have shown acceptable mechanical performance at the first ages. However, after the exposure to accelerated aging tests, these composites have shown significant reduction in the toughness or increase in embrittlement. This was mainly attributed to the improved fiber-matrix adhesion and fiber mineralization after aging process. The objective of the present research was to evaluate composites produced by the slurry dewatering technique followed by pressing and air curing, reinforced with combinations of polypropylene fibers and sisal kraft pulp at different pulp freeness. The physical properties, mechanical performance, and microstructural characteristics of the composites were evaluated before and after accelerated and natural aging. Results showed the great contribution of pulp refinement on the improvement of the mechanical strength in the composites. Higher intensities of refinement resulted in higher modulus of rupture for the composites with hybrid reinforcement after accelerated and natural aging. The more compact microstructure was due to the improved packing of the mineral particles with refined sisal pulp. The toughness of the composites after aging was maintained in relation to the composites at 28 days of cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.