52 resultados para ISOCHRYSIS-GALBANA
Resumo:
The experimental cultures of the marine microalgae Isochrysis galbana Green (variety T. Iso) and Tetraselmis suecica (Kylin) Butch for feeding mussel larvae are described in detail.
Resumo:
Global warming due to Greenhouse Gases (GHG) emissions, especially CO2, has been identified as one of the major problems of the twenty-first century, considering the consequences that could represent to planet. Currently, biological processes have been mentioned as a possible solution, especially CO2 biofixation due to association microalgae growth. This strategy has been emphasized as in addition to CO2 mitigation, occurs the production of biomass rich in compounds of high added value. The Microalgae show high photosynthetic capacity and growth rate higher than the superior plants, doubling its biomass in one day. Its culture does not show seasons, they grow in salt water and do not require irrigation, herbicides or pesticides. The lipid content of these microorganisms, depending on the species, may range from 10 to 70% of its dry weight, reaching 90% under certain culture conditions. Studies indicate that the most effective method to promote increased production of lipids in microalgae is to induce stress by limiting nitrogen content in the culture medium. These evidences justify research continuing the production of biofuels from microalgae. In this paper, it was studied the strategy of increasing the production of lipids in microalgae I. galbana with programmed nutritional stress, due to nitrogen limitation. The physiological responses of microalgae, grown in f / 2 with different concentrations of nitrogen (N: P 15,0-control, N: 5,0 P and N: P 2,5) were monitored. During exponential phase, results showed invariability in the studied conditions. However the cultures subjected to stress in stationary phase, showed lower biomass yields. There was an increase of 32,5% in carbohydrate content and 87.68% in lipids content at N: P ratio of 5,0 and an average decrease of 65% in protein content at N: P ratios of 5, 0 and 2.5. There were no significant variations in ash content, independently of cultivation and growth phase. Despite the limitation of biomass production in cultures with N: P smaller ratios, the increase of lipid accumulation highest lipids yields were observed as compared to the control culture. Given the increased concentration of lipids associated to stress, this study suggests the use of microalgae Isochrysis galbana as an alternative raw material for biofuel production
Resumo:
Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis, and these species presents growth faster than land plants, enabling higher biomass yield. Thus, it is understood that the cultivation of these photosynthetic mechanisms is part of a relevant proposal, since, when compared to other oil producing raw materials, they have a significantly higher productivity, thus being a raw material able to complete the current demand by biodiesel . The overall aim of the thesis was to obtain biofuel via transesterification process of bio oil from the microalgae Isochrysis galbana. The specific objective was to estimate the use of a photobioreactor at the laboratory level, for the experiments of microalgae growth; evaluating the characteristics of biodiesel from microalgae produced by in situ transesterification process; studying a new route for disinfection of microalgae cultivation, through the use of the chemical agent sodium hypochlorite. The introduction of this new method allowed obtaining the kinetics of the photobioreactor for cultivation, besides getting the biomass needed for processing and analysis of experiments in obtaining biodiesel. The research showed acceptable results for the characteristics observed in the bio oil obtained, which fell within the standards of ANP Resolution No. 14, dated 11.5.2012 - 18.5.2012. Furthermore, it was demonstrated that the photobioreactor designed meet expectations about study culture growth and has contributed largely to the development of the chosen species of microalgae. Thus, it can be seen that the microalgae Isochrysis galbana showed a species with potential for biodiesel production
Resumo:
Isochrysis galbana is a widely-used strain in aquaculture in spite of its low productivity. To maximize the productivity of processes based on this microalgae strain, a model was developed considering the influence of irradiance, temperature, pH and dissolved oxygen concentration on the photosynthesis and respiration rate. Results demonstrate that this strain tolerates temperatures up to 35ºC but it is highly sensitive to irradiances higher than 500 µE·m-2·s-1 and dissolved oxygen concentrations higher than 11 mg·l-1. With the researcher group of the “Universidad de Almeria”, the developed model was validated using data from an industrial-scale outdoor tubular photobioreactor demonstrating that inadequate temperature and dissolved oxygen concentrations reduce productivity to half that which is maximal, according to light availability under real outdoor conditions. The developed model is a useful tool for managing working processes, especially in the development of new processes based on this strain and to take decisions regarding optimal control strategies. Also the outdoor production of Isochrysis galbana T-iso in industrial size tubular photobioreactors (3.0 m3) has been studied. Experiments were performed modifying the dilution rate and evaluating the biomass productivity and quality, in addition to the overall performance of the system. Results confirmed that T-iso can be produced outdoor at commercial scale in continuous mode, productivities up to 20 g·m-2·day-1 of biomass rich in proteins (45%) and lipids (25%) being obtained. The utilization of this type of photobioreactors allows controlling the contamination and pH of the cultures, but daily variation of solar radiation imposes the existence of inadequate dissolved oxygen concentration and temperature at which the cells are exposed to inside the reactor. Excessive dissolved oxygen reduced the biomass productivity to 68% of maximal, whereas inadequate temperature reduces to 63% of maximal. Thus, optimally controlling these parameters the biomass productivity can be duplicated. These results confirm the potential to produce this valuable strain at commercial scale in optimally designed/operated tubular photobioreactors as a biotechnological industry.
Resumo:
Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, twelve microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.
Resumo:
O cultivo de microalgas é uma matéria prima para produção de biocombustível e de captura de carbono devido a vantagens como alta produção de biomassa e rápido crescimento quando comparado com outras fontes de energia e não necessitar de terra fértil. O presente trabalho teve como objetivo estudar métodos de concentração da biomassa. A microalga utilizada foi a Isochrysis galbana. Os cultivos tiveram duração de 20 dias e concentração inicial de 7.104 cel/mL no meio de cultivo F2/Guillard. e foram realizados em fotobioreatores de 500 mL, 3 L e 12 L. Os experimentos foram conduzidos em foto-período de 12 h claro/escuro, com temperatura de 27 a 29 C. Ao final dos cultivos, as amostras foram levadas para a sequência de processos de separação. Inicialmente, foram realizados ensaios de microfiltração em membrana com porosidade de 0,45 m em procedimento do tipo dead-end e constatou-se a rápida e intensa formação de camada de fouling. Acrescentou-se uma etapa de separação por floculação preliminar à microfiltração, utilizando-se Al2(SO4)3 como agente floculante. O meio coagulado foi então filtrado e microfiltrado. O estudo combinado das 3 etapas de separação possibilitou 99% de remoção de biomassa.O teor de óleo obtido foi de 22,4%. Portanto, o trabalho apresenta uma configuração de concentração da biomassa Isochrysis galbana visando o processo de produção de biocombustíveis
Resumo:
Freezing with added chemicals as flocculants and protectants was assessed as a means of preserving stock cultures of 4 algal species used for larval penaeid food Chaetoceros calcitrans, Skeletonema costatum, Tetraselmis chuii and Isochrysis galbana . The maximum storage effectability of the preservation techniques for each species was also determined.
Resumo:
A study was undertaken to determine the onset and duration of the growth phases of cultured algae commonly used as larval food (Skeletonema costatum, Chaetoceros calcitrans, Tetraselmis chuii, Chlorella vulgaris, Isochrysis galbana) so as to predict the time of harvest at the desired stage to suit various needs and purposes.
Resumo:
Freezing with added chemicals as flocculants and protectants was assessed as a means of preserving stock cultures of 4 algal species used for larval penaeid food Chaetoceros calcitrans, Skeletonema costatum, Tetraselmis chuii and Isochrysis galbana. The maximum storage effectability of the preservation techniques for each species was also determined.
Resumo:
Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.