988 resultados para ISING-MODEL
Resumo:
Exact expressions for the response functions of kinetic Ising models are reported. These results valid for magnetisation in one dimension are based on a general formalism that yield the earlier results of Glauber and Kimball as special cases.
Resumo:
In the combinatorial method or Grassmann algebra formalism the ground state properties of the f J Ising model can be expressed in terms of the behaviour of the eigenvectors of a matrix. It is shown that a transition from localized to extended eigenvectors signals the breakdown of ferromagnetic rigidity.
Resumo:
Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]
Resumo:
The nonequilibrium-phase transition has been studied by Monte Carlo simulation in a ferromagnetically interacting (nearest-neighbour) kinetic Ising model in presence of a sinusoidally oscillating magnetic field. The ('specific-heat') temperature derivative of energies (averaged over a full cycle of the oscillating field) diverge near the dynamic transition point.
Resumo:
The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.
Resumo:
The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).
Resumo:
We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of fourfold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one-dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one-dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.
Resumo:
In this Letter, the classical two-site-ground-state fidelity (CTGF) is exploited to identify quantum phase transitions (QPTs) for the transverse field Ising model (TFIM) and the one-dimensional extended Hubbard model (EHM). Our results show that the CTGF exhibits an abrupt change around the regions of criticality and can be used to identify QPTs in spin and fermionic systems. The method is especially convenient when it is connected with the density-matrix renormalization group (DMRG) algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study quantum correlations in an isotropic Ising ring under the effects of a transverse magnetic field. After characterizing the behavior of two-spin quantum correlations, we extend our analysis to global properties of the ring, using a figure of merit for quantum correlations that shows enough sensitivity to reveal the drastic changes in the properties of the system at criticality. This opens up the possibility to relate statistical properties of quantum many-body systems to suitably tailored measures of quantum correlations that capture features going far beyond standard quantum entanglement.
Resumo:
In a recent paper [Phys. Rev. B 50, 3477 (1994)], P. Fratzl and O. Penrose present the results of the Monte Carlo simulation of the spinodal decomposition problem (phase separation) using the vacancy dynamics mechanism. They observe that the t1/3 growth regime is reached faster than when using the standard Kawasaki dynamics. In this Comment we provide a simple explanation for the phenomenon based on the role of interface diffusion, which they claim is irrelevant for the observed behavior.
Resumo:
ches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.