938 resultados para IS ontology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Design Science Research Roadmap (DSR-Roadmap) [1] aims to give detailed methodological guidance to novice researchers in Information Systems (IS) DSR. Focus group evaluation, one phase of the overall study, of the evolving DSR-Roadmap revealed that a key difficulty faced by both novice and expert researchers in DSR, is abstracting design theory from design. This paper explores the extension of the DSR-Roadmap by employing IS deep structure ontology (BWW [2-4]) as a lens on IS design to firstly yield generalisable design theory, specifically 'IS Design Theory' (ISDT) elements [5]. Consideration is next given to the value of BWW in the application of the design theory by practitioners. Results of mapping BWW constructs to ISDT elements suggest that the BWW is promising as a common language between design researchers and practitioners, facilitating both design theory and design implementation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practical terms, conceptual modeling is at the core of systems analysis and design. The plurality of modeling methods available has however been regarded as detrimental, and as a strong indication that a common view or theoretical grounding of modeling is wanting. This theoretical foundation must universally address all potential matters to be represented in a model, which consequently suggested ontology as the point of departure for theory development. The Bunge–Wand–Weber (BWW) ontology has become a widely accepted modeling theory. Its application has simultaneously led to the recognition that, although suitable as a meta-model, the BWW ontology needs to be enhanced regarding its expressiveness in empirical domains. In this paper, a first step in this direction has been made by revisiting BUNGE’s ontology, and by proposing the integration of a “hierarchy of systems” in the BWW ontology for accommodating domain specific conceptualizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selecting an appropriate business process modelling technique forms an important task within the methodological challenges of a business process management project. While a plethora of available techniques has been developed over the last decades, there is an obvious shortage of well-accepted reference frameworks that can be used to evaluate and compare the capabilities of the different techniques. Academic progress has been made at least in the area of representational analyses that use ontology as a benchmark for such evaluations. This paper reflects on the comprehensive experiences with the application of a model based on the Bunge ontology in this context. A brief overview of the underlying research model characterizes the different steps in such a research project. A comparative summary of previous representational analyses of process modelling techniques over time gives insights into the relative maturity of selected process modelling techniques. Based on these experiences suggestions are made as to where ontology-based representational analyses could be further developed and what limitations are inherent to such analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically, asset management focused primarily on the reliability and maintainability of assets; organisations have since then accepted the notion that a much larger array of processes govern the life and use of an asset. With this, asset management’s new paradigm seeks a holistic, multi-disciplinary approach to the management of physical assets. A growing number of organisations now seek to develop integrated asset management frameworks and bodies of knowledge. This research seeks to complement existing outputs of the mentioned organisations through the development of an asset management ontology. Ontologies define a common vocabulary for both researchers and practitioners who need to share information in a chosen domain. A by-product of ontology development is the realisation of a process architecture, of which there is also no evidence in published literature. To develop the ontology and subsequent asset management process architecture, a standard knowledge-engineering methodology is followed. This involves text analysis, definition and classification of terms and visualisation through an appropriate tool (in this case, the Protégé application was used). The result of this research is the first attempt at developing an asset management ontology and process architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, the rapid growth and adoption of the World Wide Web has further exacerbated user needs for e±cient mechanisms for information and knowledge location, selection, and retrieval. How to gather useful and meaningful information from the Web becomes challenging to users. The capture of user information needs is key to delivering users' desired information, and user pro¯les can help to capture information needs. However, e®ectively acquiring user pro¯les is di±cult. It is argued that if user background knowledge can be speci¯ed by ontolo- gies, more accurate user pro¯les can be acquired and thus information needs can be captured e®ectively. Web users implicitly possess concept models that are obtained from their experience and education, and use the concept models in information gathering. Prior to this work, much research has attempted to use ontologies to specify user background knowledge and user concept models. However, these works have a drawback in that they cannot move beyond the subsumption of super - and sub-class structure to emphasising the speci¯c se- mantic relations in a single computational model. This has also been a challenge for years in the knowledge engineering community. Thus, using ontologies to represent user concept models and to acquire user pro¯les remains an unsolved problem in personalised Web information gathering and knowledge engineering. In this thesis, an ontology learning and mining model is proposed to acquire user pro¯les for personalised Web information gathering. The proposed compu- tational model emphasises the speci¯c is-a and part-of semantic relations in one computational model. The world knowledge and users' Local Instance Reposito- ries are used to attempt to discover and specify user background knowledge. From a world knowledge base, personalised ontologies are constructed by adopting au- tomatic or semi-automatic techniques to extract user interest concepts, focusing on user information needs. A multidimensional ontology mining method, Speci- ¯city and Exhaustivity, is also introduced in this thesis for analysing the user background knowledge discovered and speci¯ed in user personalised ontologies. The ontology learning and mining model is evaluated by comparing with human- based and state-of-the-art computational models in experiments, using a large, standard data set. The experimental results are promising for evaluation. The proposed ontology learning and mining model in this thesis helps to develop a better understanding of user pro¯le acquisition, thus providing better design of personalised Web information gathering systems. The contributions are increasingly signi¯cant, given both the rapid explosion of Web information in recent years and today's accessibility to the Internet and the full text world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase  subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a model for knowledge description and formalization, ontologies are widely used to represent user profiles in personalized web information gathering. However, when representing user profiles, many models have utilized only knowledge from either a global knowledge base or a user local information. In this paper, a personalized ontology model is proposed for knowledge representation and reasoning over user profiles. This model learns ontological user profiles from both a world knowledge base and user local instance repositories. The ontology model is evaluated by comparing it against benchmark models in web information gathering. The results show that this ontology model is successful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.