946 resultados para ION-EXCHANGE PROPERTIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a low temperature synthesis of layered Na0×20CoO2 and K0×44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0×20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to investigate the suitability of natural and chemically treated wool fibres for use in water treatment and in the separation of constituents for monitoring contaminants in water.

Experimental work was carried out to determine the ability of natural and treated wool fibres to remove these constituents from water,

This study provided information on the characteristics of the wool fibre as a medium in water treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I. Novel composite polyelectrolyte materials were developed that exhibit desirable charge propagation and ion-retention properties. The morphology of electrode coatings cast from these materials was shown to be more important for its electrochemical behavior than its chemical composition.

Part II. The Wilhelmy plate technique for measuring dynamic surface tension was extended to electrified liquid-liquid interphases. The dynamical response of the aqueous NaF-mercury electrified interphase was examined by concomitant measurement of surface tension, current, and applied electrostatic potential. Observations of the surface tension response to linear sweep voltammetry and to step function perturbations in the applied electrostatic potential (e.g., chronotensiometry) provided strong evidence that relaxation processes proceed for time-periods that are at least an order of magnitude longer than the time periods necessary to establish diffusion equilibrium. The dynamical response of the surface tension is analyzed within the context of non-equilibrium thermodynamics and a kinetic model that requires three simultaneous first order processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the optical properties of erbium-doped and erbium/ytterbium codoped Na(2)O-Al(2)O(3)-TiO(2)-Nb(2)O(5)-P(2)O(5) glass systems and also the characterization of planar waveguides obtained by typical thermally assisted Ag+<-> Na+ ion-exchange process. The glass systems allow the preparation of single mode and multimode planar waveguides presenting a strong and relatively broad emission at 1536 nm. The emission signal in the infrared region is intensified for silver-containing samples when compared with free-silver samples. The emission signal intensification may be attributed to a nonplasmonic energy transfer from silver species to Er3+ ions as no bands related to surface plasmon resonance (SPR) of silver nanoparticles were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co 2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5-15 min at pH 8. Once bound, 45-100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.