838 resultados para ION PENETRATION
Resumo:
Hydrophobic agents are surface protection materials capable of increasing the angle of contact between the water and the concrete surface. For this reason, hydrophobic agents reduce water (in liquid form) penetration in concrete. Therefore, many European construction regulating agencies recommend this treatment in their maintenance policy. Nonetheless, there continues to be a gap in the understanding about which transport mechanisms of the concrete are modified by the hidrophobic agents. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. To this end, certain tests were used: Two involving permeability mechanism, one determining capillary absorption, and the last, a migration test used to estimate the chloride diffusion coefficient in saturated condition. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration (reduced by 2.12 and 7.0 times, depending of the product). However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient (in saturated condition) is reduced by the hydrophobic agents, however, the magnitude of this reduction is minor (reduced by 11% and 17%, depending on the product).
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of 980-nm diode laser at different parameters on root canal dentin permeability associated with different irrigants. Seventy-five canines were sectioned at 15 mm from the apex, prepared mechanically up to #40 .02 instrument, and irrigated with 2 mL distilled water. Final irrigation (10 mL) was used as follows: (1) distilled water; (2) 1% NaOCl; (3) 17% ethylenediaminetetraacetic acid + a cationic surfactant cetyltrimethylammonium bromide (EDTAC). Laser was applied at 1.5 or 3.0 W as either continuous wave or pulsed wave (100 Hz). The teeth were then processed histochemically, the percentage of copper ion penetration into the dentin of the canal walls was counted, and the data were analyzed statistically with the Tukey-Kramer test (alpha < .01). When laser was associated with water, an increase in permeability was found, whereas permeability decreased when associated with EDTAC. Dentin permeability after laser irradiation was directly dependent on the solution used for final irrigation.
Resumo:
Chloride ion penetration through concrete to reinforcing steel is causing the premature deterioration of numerous bridge decks in Iowa. The purpose of the research reported in this paper was to determine whether any of several additives or alternative deicing chemicals could inhibit corrosion of reinforcing steel. The deicers tested were calcium magnesium acetate (CMA), CMA plus NaCl (NaCl: sodium chloride), Quicksalt plus PCI, and CG-90, a polyphosphate solution being developed by Cargill. Two tests were established. First, steel coupons were placed in a 15% solution of a deicer and distilled water to determine which alternative deicer would cause the least amount of corrosion in solution. The coupons were weighed periodically to determine each coupon's weight loss from corrosion. The second test involved ponding a 15% solution of each material on reinforced concrete blocks. Weekly copper-copper sulfate electrical half-cell (CSE) potential readings were taken on each block to determine whether corrosive activity was occurring at the steel surface. When the ponding research was concluded, concrete samples were taken from one of the three blocks ponded with each deicer. The samples were used to determine the chloride ion content at the level of the steel. Results show that all the deicers were less corrosive than NaCl. Only pure CMA, however, significantly inhibited the corrosion of steel embedded in concrete.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
A quantidade de resíduos gerados pelo setor da Construção Civil ultimamente vem chamando atenção devido à dimensão com a qual atua como impacto ambiental utilizando materiais de fontes naturais não renováveis e aumentando as quantidades de lixos produzidos pelo meio urbano. No Brasil, esta estimativa gira em torno de 90.000 toneladas geradas por dia. A proposta de utilizar o agregado proveniente de RCC (resíduo de construção civil) como parte integrante de concretos estruturais torna-se ainda mais interessante a partir do momento em que se busca uma diminuição nos custos para a produção do concreto, carregando consigo a mentalidade ambientalista quando poupa a utilização de recursos naturais os quais alguns já começam a se esgotar. Bancos de areia e fontes de seixo começam a se extinguir devido à larga utilização desses agregados nos concretos produzidos em Belém e cidades interiores do estado do Pará. Assim a necessidade de novas fontes de agregados nos faz buscar nos resíduos da construção civil prováveis fontes de agregados que respondam de forma similar aos naturais. Levando em consideração esta proposta, esta dissertação avaliou a durabilidade de concretos produzidos com o agregado de RCC cerâmico, através de ensaios de absorção de água por capilaridade, carbonatação, penetração de íons cloretos e resistividade elétrica. Para tanto, foi substituído o agregado graúdo natural pelo agregado graúdo cerâmico em 50%, onde esta porcentagem de agregado reciclado foi submetida às taxas de pré-saturação de 60%, 80% e 100%. Nos resultados obtidos pode-se observar que a presença do AGRC (agregado graúdo reciclado cerâmico), independentemente do grau de pré-saturação foi significativa em todos os resultados obtidos, fato que embora deixe os concretos mais suscetíveis à perda de durabilidade, apresentou uma mesma tendência de comportamento em relação às misturas referência. Os resultados mais próximos das misturas convencionais foram alcançados pelos concretos que continham agregados cerâmicos pré-saturados com água à uma taxa de 80%.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.
Resumo:
Purpose. As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). Methods. We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol: water (1: 1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1: 1 molar ratio ion-pairs with SA in liquid paraffin. Results. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 mug/cm(2)/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 mug/cm(2)/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8 +/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Conclusions. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.
Resumo:
Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.
Resumo:
Two common herbicides; isoproturon and bentazon, are strong skin irritants and cross the skin barrier easily. Assessment of percutaneous absorption of these substances is a very important step in the evaluation of any dermal or transdermal dose, especially among agricultural workers who frequently have dermal exposures during crop treatment. The aims of the study were to determine the permeation rate of human skin for both herbicides in vitro, and histologically evaluate skin damage due to irritation at different concentrations. Skin penetration was assessed using a dynamic flow-through in vitro penetration system and analysis were performed with ion trap LC-MS (acidified water: acetronitile, C18 column). Two concentrations of bentazon (75 and 150 μg/mL) and isoproturon (125 and 250 μg/mL) in saline solution were applied on excised human skin from several donors. Saline water was used as receptor fluid. Collection times were: 4, 8, and 24 hours. After the experiments, the skin was removed and examined by histopathology for apoptosis, acanthosis, acantholysis and epidermolysis. The skin permeation rate, J, was calculated from the slope of the cumulative amount permeated as a function of time. The lag time, tL, was assigned from the time-axis intercept of the extrapolation of this linearity. Our results showed that tL for bentazon and isoproturon for both concentrations tested were similar; 2, 1.5 hours, respectively. Bentazon had a lowerer J compared to isoproturon; 350, 600 ng/cm2/h, respectively. Some acanthosis was observed after 8 hours of exposure to either of the two substances. In conclusion, our in vitro experiments demonstrate that bentazon and isoproturon cross the skin barrier within 2 hours even at very low concentrations, and showed some signs of skin damage. Future tests involve concentrations found in commercial products.
Resumo:
This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.