988 resultados para ION IRRADIATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that irradiation may enhance the plasticity in metallic glasses by increasing the free-volume content via micropillar compression experiments on an ion-irradiated bulk metallic glass (BMG). Results show that irradiation decreases the flow stress and enhances the shear band formation by lowering the magnitude of stress serrations in plastic flow regime. These results highlight that amorphous alloys can mitigate the deleterious affects of severe ion irradiation as compared to their crystalline counterparts. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy investigations on swift heavy ion (200 MeV An) irradiated surfaces of a high T-c single crystal YBa2Cu3O7-delta are presented. Results obtained revealed an ion-induced erosion/sputtering clearly confirming our earlier observation on grain boundary dominated thin films. Apart from sputtering, notable effects were seen with many defect structures like dikes/hillocks surrounded by craters, dikes, holes, pearl like structures and ripple formation of sub-micron undulations, all in one crystal. Results are discussed in the light of co-operative phenomena of material re-distribution mechanism related to mass transfer and crater formations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potassium titanyl phosphate single crystals were irradiated with 48 MeV lithium ions at fluences varying from 5×1012 to 1016 ions/cm2. The defects created in the crystal have been characterized using x-ray rocking curve measurements, optical transmittance, and photoluminescence spectroscopy. From x-ray rocking curve studies, the full width at half maximum for the irradiated samples was observed to increase, indicating lattice strain caused by the energetic ions. Optical transparency of these samples was found to decrease upon irradiation. The irradiated samples exhibited a broadband luminescence in the 700–900 nm region, for fluences above 5×1013 ions/cm2. The results indicate that ion-beam-induced optical effects in KTiOPO4 single crystals are very similar to the ones obtained for crystals with “gray tracks,” which are attributed to the electronic transitions in the Ti3+ levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MeV An irradiation leads to a shape change of polystyrene (PS) and SiO2 particles from spherical to ellipsoidal, with an aspect ratio that can be precisely controlled by the ion fluence. Sub-micrometer PS and SiO2 particles were deposited on copper substrates and irradiated with Au ions at 230 K, using an ion energy and fluence ranging from 2 to 10 MeV and 1 x 10(14) ions/cm(2) to 1 x 10(15) ions/cm(2). The mechanisms of anisotropic deformation of PS and SiO2 particles are different because of their distinct physical and chemical properties. At the start of irradiation, the volume of PS particles decrease, then the aspect ratio increases with fluence, whereas for SiO2 particles the volume remains constant. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.