999 resultados para ION CHROMATOGRAPHY
Resumo:
An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.
Resumo:
Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.
Resumo:
"March 1980."
Resumo:
Traditionally, in the cigarettes industry, the determination of ammonium ion in the mainstream smoke is performed by ion chromatography. This work studies this determination and compares the results of this technique with the use of external and internal standard calibration. A reference cigarette sample presented measurement uncertainty of 2.0 μg/cigarette and 1.5 μg/cigarette, with external and internal standard, respectively. It is observed that the greatest source of uncertainty is the bias correction factor and that it is even more significant when using external standard, confirming thus the importance of internal standardization for this correction.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3-, SO4**2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores. The dominant compounds depend only on the ion balance and the sequence of chemical reactions. In priority order, the principle salts are calcium sulfate, other sulfates, nitrate, chloride, and carbonate. The chemical abundances deduced by this method agree well with the results of Raman spectroscopy on individual salt inclusions. The abundances in the ice cores are shown to reflect differences in climatic periods (the acidic environment of the Holocene versus the reductive environment of the last glacial maximum) and regional conditions (the marine environment of Antarctica versus the continental environment of Greenland).
Resumo:
Eight DSDP/ODP cores were analyzed for major ion concentrations and d37Cl values of water-soluble chloride (d37Clwsc) and structurally bound chloride (d37Clsbc) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition. The average total Cl content of all 86 samples is 0.26±0.16 wt.% (0.19±0.10 wt.% as water-soluble Cl (Xwsc) and 0.09±0.09 wt.% as structurally bound Cl (Xsbc)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl**- site and the water-soluble Cl**- site varies from -1.08? to +1.16?, averaging to +0.21?. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk d37Cl values (+0.05? to +0.36?); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk d37Cl values (-1.26? and -0.54?). The cores with negative d37Cl values also have variable Cl**-/SO4**2- ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ~1? with depth for both the water-soluble and structurally bound Cl fractions. Non-zero bulk d37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive d37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low d37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative d37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.
Resumo:
B Body wet weight and mantle length of juvenile Sepia officinalis were monitored over a peroid of five weeks. The animals had hatched in our aquarium system in Bremerhaven, Germany at 16°C and were descendants of individuals collected in the Oosterschelde estuary, Netherlands. Animals were kept in natural sea water at 10 or 17°C and fed small live shrimp (Palaemonetes varians) ad libitum daily. At the end of the experiment some animals kept at 17°C were sacrificed using ethanol. Haemolymph was withdrawn from the head vein using syringe and needle. Haemolymph samples were stored at -20°C until Na+, Cl-, K+, Mg2+, Ca2+ and SO42- concentrations were determined using ion chromatography. Mean body weight more that tripled at 17°C during the investigation period, while growth was impared by exposue to 10°C. Haemolymph ion concentrations were similar to those in sea water, except for sulphate. The concentration of this ion in the haemolymph was more that ten times lower than in sea water.
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
A low capacity for regulation of extracellular Mg2+ has been proposed to exclude reptant marine decapod crustaceans from temperatures below 0°C and thus to exclude them from the high Antarctic. To test this hypothesis and to elaborate the underlying mechanisms in the most cold-tolerant reptant decapod family of the sub-Antarctic, the Lithodidae, thermal tolerance was determined in the crab Paralomis granulosa (Decapoda, Anomura, Lithodidae) using an acute stepwise temperature protocol (-1°, 1°, 4°, 7°, 10°, and 13°C). Arterial and venous oxygen partial pressures (Po2) in hemolymph, heartbeat and ventilation beat frequencies, and hemolymph cation composition were measured at rest and after a forced activity (righting) trial. Scopes for heartbeat and ventilation beat frequencies and intermittent heartbeat and scaphognathite beat rates at rest were evaluated. Hemolymph [Mg2+] was experimentally reduced from 30 mmol/L to a level naturally observed in Antarctic caridean shrimps (12 mmol/L) to investigate whether the animals remain more active and tolerant to cold (-1°, 1°, and 4°C). In natural seawater, righting speed was significantly slower at -1° and 13°C, compared with acclimation temperature (4°C). Arterial and venous hemolymph Po2 increased in response to cooling even though heartbeat and ventilation beat frequencies as well as scopes decreased. At rest, ionic composition of the hemolymph was not affected by temperature. Activity induced a significant increase in hemolymph [K+] at -1° and 1°C. Reduction of hemolymph [Mg2+] did not result in an increase in activity, an increase in heartbeat and ventilation beat frequencies, or a shift in thermal tolerance to lower temperatures. In conclusion, oxygen delivery in this cold-water crustacean was not acutely limiting cold tolerance, and animals may have been constrained more by their functional capacity and motility. In contrast to earlier findings in temperate and subpolar brachyuran crabs, these constraints remained insensitive to changing Mg2+ levels.