733 resultados para INVISIBLE AXION
Resumo:
We show that by introducing appropriate local Z(N)(Ngreater than or equal to13) symmetries in electroweak models it is possible to implement an automatic Peccei-Quinn symmetry, at the same time keeping the axion protected against gravitational effects. Although we consider here only an extension of the standard model and a particular 3-3-1 model, the strategy can be used in any kind of electroweak model. An interesting feature of this 3-3-1 model is that if we add (i) right-handed neutrinos, (ii) the conservation of the total lepton number, and (iii) a Z(2) symmetry, the Z(13) and the chiral Peccei-Quinn U(1)P-Q symmetries are both accidental symmetries in the sense that they are not imposed on the Lagrangian but are just a consequence of the particle content of the model, its gauge invariance, renormalizability, and Lorentz invariance. In addition, this model has no domain wall problem.
Resumo:
We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z(11)circle timesZ(2) symmetry. This symmetry is suitably accommodated in this model when we augment its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation, and constituting a good candidate for the cold dark matter.
Resumo:
We show that by imposing local Z(13)circle timesZ(3) symmetries in an SU(2)circle timesU(1) electroweak model we can implement an invisible axion in such a way that (i) the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian, and (ii) the axion is protected from semiclassical gravitational effects. In order to be able to implement such a large discrete symmetry, and at the same time allow a general mixing in each charge sector, we introduce right-handed neutrinos and enlarge the scalar sector of the model. The domain wall problem is briefly considered.
Resumo:
By introducing local Z(N) symmetries with N=11,13 in two 3-3-1 models, it is possible to implement an automatic Peccei-Quinn symmetry, keeping the axion protected against gravitational effects at the same time. Both models have a Z(2) domain wall problem and the neutrinos are strictly Dirac particles.
Resumo:
We show that in any invisible axion model due to the effects of effective nonrenormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic Z(N) symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.
Resumo:
We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.
Resumo:
We show that in an SU(2)circle timesU(1) model with a Dine-Fischler-Srednicki-like invisible axion it is possible to obtain (i) the convergence of the three gauge coupling constants at an energy scale near the Peccei-Quinn scale; (ii) the correct value for sin(2)theta<^>(W)(M-Z); (iii) the stabilization of the proton by the cyclic Z(13)circle timesZ(3) symmetries which also stabilize the axion as a solution to the strong CP problem. Concerning the convergence of the three coupling constants and the prediction of the weak mixing angle at the Z peak, this model is as good as the minimal supersymmetric standard model with mu(SUSY)=M-Z. We also consider the standard model with six and seven Higgs doublets. The main calculations were done in the 1-loop approximation but we briefly consider the 2-loop contributions.
Resumo:
We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M(Z), of alpha, alpha(s), and sin(2)theta(W). A discrete, anomalous, Z(13) symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z(13) symmetry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We construct an invisible quantum barrier which represents the phenomenon of quantum reflection using available data on atom-wall and Bose-Einstein-condensate-wall reflection. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein condensate (BEC) reflection from a solid silicon surface. A time-dependent, one-spatial-dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite-size effect. The trapping of an ultracold atom or BEC between two walls is discussed.