988 resultados para INTERNUCLEAR DISTANCES
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
The interatomic potential of the ion-atom scattering system I^N+-I at small intermediate internuclear distances is calculated for different charge states N from atomic Dirac-Focker-Slater (DFS) electron densities within a statistical model. The behaviour of the potential structures, due to ionized electronic shells, is studied by calculations of classical elastic differential scattering cross-sections.
Resumo:
A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.
Resumo:
New molecular species HSeCl, HClSe, and SeCl were investigated at a high level of theory, CCSD(T), with a series of correlation consistent basis sets with extrapolation to the CBS limit. Account has been taken for valence-only and core-valence correlation effects, and of anharmonic effects on the vibrational frequencies. HSeCl is 43.25 kcal mol (1) more stable than HClSe. A barrier (Delta G(#)) of 47.20 kcal mol (1) separates these species. Internuclear distances are generally overestimated by 0.008 angstrom in the valence-only correlation calculations. Inclusion of anharmonicity leads to much improved vibrational frequencies. For SeCl, we estimate Delta H(f) (0 K) = 23.96 and Delta H(f) (298.15 K) = 24.64 kcal mol (1); for HSeCl, we had 4.20 and 4.97 kcal mol (1), respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Deutsche Forschungsgemeinschaft [SFB 858]
Resumo:
We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF2+, SnCl2+, and SnO2+ using ab initio computer calculations. The ground states of SnF2+, SnCl2+, and SnO2+ are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF2+ dissociates into Sn2+ + F, the long range behaviour of the potential energy curves of SnCl2+ and SnO2+ is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T-e) to form SnF2+, SnCl2+, and SnO2+ from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO2+ and SnF2+ have been observed for prolonged oxygen (O-16(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF2) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl2+ has been detected for O-16(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl2) powder. To our knowledge, SnF2+ is a novel gas-phase molecule, whereas SnCl2+ had been detected previously by electron-impact ionization mass spectrometry, and SnO2+ had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758475]
Resumo:
The conjugated frustrated phosphane/borane Lewis pairs formed by 1,1-carboboration of a substituted diphenylphosphino acetylene, undergo a synergistic 1,1-addition reaction to n-butyl isocyanide with formation of new B-C and P-C bonds to the former isonitrile carbon atom. Using tert-butyl isocyanide dynamic behaviour between the isocyanide-[B] adduct and the 1,1-addition product formation was observed in solution. The different modes of isocyanide binding to the FLPs in the solid state were characterized using X-ray crystal structure analyses and comprehensive 11B and 31P solid-state magicangle- spinning (MAS-) NMR experiments. The free FLP, the Lewis adduct at the borane group, and the cyclic product resulting from isocyanide addition to both reaction centers, can be differentiated via 11B and 31P isotropic chemical shifts, 11B nuclear electric quadrupole coupling constants, isotropic indirect 11B-31P spin-spin coupling constants, and 11B...31P internuclear distances measured by rotational echo double resonance.
Resumo:
Aminoacyl-tRNA synthetases (RSs) are responsible for the essential connection of amino acids with trinucleotide sequences of tRNA's. The RS family constitutes two structurally dissimilar groups of proteins, class I and class II. Methionyl-tRNA synthetase (MetRS) and isoleucyl-tRNA synthetase (IleRS), both members of class I, were the focus of this work. Both enzymes are zinc-containing proteins; show a high degree of amino acid specificity; and edit activated noncognate amino acids, thereby ensuring the fidelity of the genetic code. The goals of this work were to further delineate the molecular basis of catalysis and discrimination in these enzymes by mapping active site geometries using high-resolution nuclear magnetic resonance spectroscopy (NMR).^ Internuclear distances obtained from transferred nuclear Overhauser effects were used to define the conformations of Mg($\alpha$,$\beta$-methylene)ATP bound to E. coli MetRS and E. coli IleRS in multiple complexes. Identical conformations were found for the bound ATP. Thus, the predicted structural homology between IleRS and MetRS is supported by consensus enzyme-bound nucleotide conformations. The conformation of the bound nucleotide is not sensitive to occupation of the amino acid site of MetRS or IleRS. Therefore, conformational changes known to occur in the synthetases upon ligand binding appear not to alter the bound conformation of the adenosine portion of the nucleotide. Nuclear Overhauser effects on the substrate amino acid L-selenomethionine were also used to evaluate the enzyme-bound conformation of the cognate amino acid. The amino acid assumes a conformation which is consistent with a proposed editing mechanism.^ The E. coli MetRS was shown to catalyze amino acid $\alpha$-proton exchange in the presence of deuterium oxide of all cognate amino acids. It is proposed that the enzyme-bound zinc coordinates the $\alpha$-carboxylate of the amino acid, rendering the $\alpha$-proton more acidic. An enzymic base is responsible for exchange of the $\alpha$-proton. This proposal suggests that the enzyme-bound zinc may have a role in amino acid discrimination in MetRS. However, the role of this exchange reaction in catalysis remains unknown. ^
Resumo:
Equations are presented for the avereage internuclear distance r(g) and r(a) in terms of elements of the L matrix and the L tensor. These are an alternative to the equations presented by Kuchitsu and Morino.
Resumo:
Some factors complicate comparisons between linkage maps from different studies. This problem can be resolved if measures of precision, such as confidence intervals and frequency distributions, are associated with markers. We examined the precision of distances and ordering of microsatellite markers in the consensus linkage maps of chromosomes 1, 3 and 4 from two F 2 reciprocal Brazilian chicken populations, using bootstrap sampling. Single and consensus maps were constructed. The consensus map was compared with the International Consensus Linkage Map and with the whole genome sequence. Some loci showed segregation distortion and missing data, but this did not affect the analyses negatively. Several inversions and position shifts were detected, based on 95% confidence intervals and frequency distributions of loci. Some discrepancies in distances between loci and in ordering were due to chance, whereas others could be attributed to other effects, including reciprocal crosses, sampling error of the founder animals from the two populations, F(2) population structure, number of and distance between microsatellite markers, number of informative meioses, loci segregation patterns, and sex. In the Brazilian consensus GGA1, locus LEI1038 was in a position closer to the true genome sequence than in the International Consensus Map, whereas for GGA3 and GGA4, no such differences were found. Extending these analyses to the remaining chromosomes should facilitate comparisons and the integration of several available genetic maps, allowing meta-analyses for map construction and quantitative trait loci (QTL) mapping. The precision of the estimates of QTL positions and their effects would be increased with such information.
Resumo:
Continuing our series of papers on the three-dimensional (3D) structure and accurate distances of planetary nebulae (PNe), we present here the results obtained for PN NGC 40. Using data from different sources and wavelengths, we construct 3D photoionization models and derive the physical quantities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3D photoionization codes constrained by observational data to derive the 3D nebular structure, physical and chemical characteristics, and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission-line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate-and low-mass stars, we derive the mass and age of the central star of NGC 40 as (0.567 +/- 0.06) M(circle dot) and (5810 +/- 600) yr, respectively. The distance obtained from the fitting procedure was (1150 +/- 120) pc.
Resumo:
Introduction: The aims of this study were to evaluate the distances between the mandibular permanent teeth and the alveolar process in Brazilians with normal occlusion and to compare them with normal American values. Methods: We used 59 mandibular casts from untreated subjects who had permanent dentition and the 6 keys to normal occlusion. A computer program was used to calculate the distances between the dental reference points and the alveolar process for each tooth. The mean values were then compared to the normal values by applying the Student t test at a significance level of 0.05. Results: The results showed a progressive increase of these distances from the anterior region (incisors) to the posterior region (molars), from 0.00 to 2.49 mm. All measurements had statistically significant differences from the American sample, except for the values for canines and first premolars. Conclusions: Brazilians with normal occlusion have more lingual crown positions for the incisors, second premolars, and molars compared with Americans with normal occlusion. Although these findings were statistically significant, they are unlikely to be clinically significant. (Am J Orthod Dentofacial Orthop 2010; 137: 308.e1-308.e4)