990 resultados para INTERMEDIATE MOMENTUM-TRANSFER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the theoretical model proposed by Nield and Kuznetsov. Data pertinent to plate-fin heat exchangers, as bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then used to give the overall permeability which is linked to the porosity and permeability of each phase as well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical values are obtained for the momentum transfer coefficient for three different fin spacing values considered in the heat exchanger experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates for A(e, e'p) on the nuclei ^2H, C, Fe, and Au have been measured at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV fc)^2 . We extract the nuclear transparency T, a measure of the importance of final state interactions (FSI) between the outgoing proton and the recoil nucleus. Some calculations based on perturbative QCD predict an increase in T with momentum transfer, a phenomenon known as Color Transparency. No statistically significant rise is seen in the present experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four­ momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined observations by meridian-scanning photometers, all-sky auroral TV camera and the EISCAT radar permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71°–75° invariant latitude radar field of view. The radar data revealed dominating northward and westward ion drifts, of magnitudes close to the corresponding velocities of the discrete, transient auroral forms, during the two different events reported here, characterized by IMF |BY/BZ| < 1 and > 2, respectively (IMF BZ between −8 and −3 nT and BY > 0). The spatial scales of the discrete optical events were ∼50 km in latitude by ∼500 km in longitude, and their lifetimes were less than 10 min. Electric potential enhancements with peak values in the 30–50 kV range are inferred along the discrete arc in the IMF |BY/BZ| < 1 case from the optical data and across the latitudinal extent of the radar field of view in the |BY/BZ| > 2 case. Joule heat dissipation rates in the maximum phase of the discrete structures of ∼ 100 ergs cm−2 s−1 (0.1 W m−2) are estimated from the photometer intensities and the ion drift data. These observations combined with the additional characteristics of the events, documented here and in several recent studies (i.e., their quasi-periodic nature, their motion pattern relative to the persistent cusp or cleft auroral arc, the strong relationship with the interplanetary magnetic field and the associated ion drift/E field events and ground magnetic signatures), are considered to be strong evidence in favour of a transient, intermittent reconnection process at the dayside magnetopause and associated energy and momentum transfer to the ionosphere in the polar cusp and cleft regions. The filamentary spatial structure and the spectral characteristics of the optical signature indicate associated localized ˜1-kV potential drops between the magnetopause and the ionosphere during the most intense auroral events. The duration of the events compares well with the predicted characteristic times of momentum transfer to the ionosphere associated with the flux transfer event-related current tubes. It is suggested that, after this 2–10 min interval, the sheath particles can no longer reach the ionosphere down the open flux tube, due to the subsequent super-Alfvénic flow along the magnetopause, conductivities are lower and much less momentum is extracted from the solar wind by the ionosphere. The recurrence time (3–15 min) and the local time distribution (∼0900–1500 MLT) of the dayside auroral breakup events, combined with the above information, indicate the important roles of transient magnetopause reconnection and the polar cusp and cleft regions in the transfer of momentum and energy between the solar wind and the magnetosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent radar studies of field-perpendicular flows in the auroral ionosphere, in conjunction with observations of the interplanetary medium immediately upstream of the Earth's bow shock, have revealed direct control of dayside convection by the Bz component of the interplanetary magnetic field (IMF). The ionospheric flows begin to respond to both northward and southward turnings of the IMF impinging upon the magnetopause after a delay of only a few minutes in the early afternoon sector, rising to about 15 minutes nearer dawn and dusk. In both the polar cap and the auroral oval, the subsequent rise and decay times are of order 5–10 minutes. We conclude there is very little convection “flywheel” effect in the dayside polar ionosphere and that only newly-opened flux tubes impart significant momentum to the ionosphere, in a relatively narrow region immediately poleward of the cusp. These findings concerning the effects of quasi-steady reconnection have important implications for any ionospheric signatures of transient reconnection which should be considerably shorter-lived than thought hitherto. In order to demonstrate the difficulty of uniquely identifying a Flux Transfer Event (FTE) in ground-based magnetometer data, we present observations of an impulsive signature, identical with that expected for an FTE if data from only one station is studied, following an observed magnetopause compression when the IMF was purely northward. We also report new radar observations of a viscous-like interaction, consistent with an origin on the flanks of the magnetotail and contributing an estimated 15–30kV to the total cross-cap potential during quiet periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorbate molecules scattered in the repulsive field of a surface feature in the form of a semi-cylindrical stripe may be considered as a simple model for a nano-patterned surface. The extent of scattering was conveniently expressed as the tangential momentum accommodation coefficient. An analytical result was obtained using a simple local specular reflection hypothesis in contrast to the more complicated situation of an array of atoms discussed elsewhere, in which screening and secondary reflection may occur (Nicholson and Bhatia 2005). It was also demonstrated that a simple 2D representation leads to the same result for the tangential momentum accommodation coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution study of the H(e,e'K+)Λ,Σ 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c) 2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (&thetas;CM∼6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and &thetas;CM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ 0/Λ production ratio were performed at &thetas; CM∼6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ 0/Λ production were binned in Q2, W and &thetas;CM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution study of the H(e,e'K+)Λ,Σ0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c)2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (θCM~6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and θCM, and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ0/Λ production ratio were performed at θCM, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ0/Λ production were binned in Q2, W and θCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the form factors and the coupling constant in the D*D rho vertex in the framework of QCD sum rules. We evaluate the three-point correlation functions of the vertex considering D, rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g(D*D rho) = 4.3 +/- 0.9 GeV(-1). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the form factors and the coupling constant in the rho D*D* vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g rho D*D* = 6.60 +/- 0.31. This number is 50% larger than what we would expect from SU(4) estimates. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of alpha-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of alpha-viscosity with alpha = 0.01-0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of alpha-viscosity is still being explored.