1000 resultados para INTERCHAIN INTERACTION
Resumo:
A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).
Resumo:
The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.
Resumo:
We focus this work on the theoretical investigation of the block-copolymer poly [oxyoctyleneoxy-(2,6-dimethoxy-1,4phenylene-1,2-ethinylene-phenanthrene-2,4diyl) named as LaPPS19, recently proposed for optoelectronic applications. We used for that a variety of methods, from molecular mechanics to quantum semiempirical techniques (AMI, ZINDO/S-CIS). Our results show that as expected isolated LaPPS19 chains present relevant electron localization over the phenanthrene group. We found, however, that LaPPS19 could assemble in a pi-stacked form, leading to impressive interchain interaction; the stacking induces electronic delocalization between neighbor chains and introduces new states below the phenanthrene-related absorption; these results allowed us to associate the red-shift of the absorption edge, seen in the experimental results, to spontaneous pi-stack aggregation of the chains. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 885-892, 2010
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.
Resumo:
The interaction of scopolamine and cholesterol with sphingomyelin bilayers has been investigated by FT-Raman spectroscopy in head-group region (600-1000 cm(-1)), the C-C stretching (1000-1200 cm(-1)), CH2 deformation (1400-1500 cm(-1)) and the C-H stretching (2800-3000 cm(-1)) mode regions. The results indicate that scopolamine and cholesterol do not change the conformation of O-C-C-N+ backbone in the choline group of sphingomyelin bilayers, the polar headgroup is still extending parallel to the bilayer surface and O-C-C-N+ group is still in its gauche conformer. Scopolamine and cholesterol lower the order of the interface, the interchain, CH2 crystal lattices and the lateral chain-chain packing, and increase their fluidity.
Resumo:
The interaction of La3+ and cholesterol with the negatively charged phospholipid dipalmitoylphosphatidylglycerol bilayers was studied by Fourier transform-Raman spectroscopy. La3+ was shown to increase interchain order and intermolecular ordering of the lipid lattice, cholesterol exhibited less of an effect, the La3+-DPPG-cholesterol complex was more ordered than cholesterol=DPPG nd less ordered than La3+-DPPG complexes, cholesterol modulates the order/disorder parameters of DPPG bilayers.
Resumo:
This paper demonstrates that in order to understand and design for interactions in complex work environments, a variety of representational artefacts must be developed and employed. A study was undertaken to explore the design of better interaction technologies to support patient record keeping in a dental surgery. The domain chosen is a challenging real context that exhibits problems that could potentially be solved by ubiquitous computing and multi-modal interaction technologies. Both transient and durable representations were used to develop design understandings. We describe the representations, the kinds of insights developed from the representations and the way that the multiple representations interact and carry forward in the design process.
Resumo:
Among the many new opportunities that digital technologies are enabling are an increased capacity for viewers to interact not only with the program content, but with an increasingly wide array of other digital applications. Within this context this project has developed a new interaction device (incorporating gestural platform technology) and user interfaces to facilitate interactive access to digital media in a lounge room setting. This paper provides an overview of an interdisciplinary design process applied by Australasian CRC for Interaction Design (ACID) researchers—in order to develop the device and present in detail its unique features.
Resumo:
The definition and operationalisation of interactional competence in speaking tests that entail co-construction of discourse is an area of language testing requiring further research. This article explores the reactions of four trained raters to paired candidates who oriented to asymmetric patterns of interaction in a discussion task. Through an analysis of candidate discourse combined with rater notes, stimulated verbal recalls, rater discussions and scores awarded for interactional effectiveness, the article examines the extent to which raters compensate or penalise candidates for their role in co-constructing asymmetric interactional patterns. The article argues that key features of the interaction are perceived by the raters as mutual achievements, and it further suggests that the awarding of shared scores for interactional competence is one way of acknowledging the inherently co-constructed nature of interaction in a paired speaking test.