993 resultados para INTERACTING DARK ENERGY
Resumo:
Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.
Resumo:
Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling delta between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w(DE)(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w(DE) and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.
Resumo:
In this work we extend the first order formalism for cosmological models that present an interaction between a fermionic and a scalar field. Cosmological exact solutions describing universes filled with interacting dark energy and dark matter have been obtained. Viable cosmological solutions with an early period of decelerated expansion followed by late acceleration have been found, notably one which presents a dark matter component dominating in the past and a dark energy component dominating in the future. In another one, the dark energy alone is the responsible for both periods, similar to a Chaplygin gas case. Exclusively accelerating solutions have also been obtained.
Resumo:
We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.
Resumo:
The last decade has witnessed the establishment of a Standard Cosmological Model, which is based on two fundamental assumptions: the first one is the existence of a new non relativistic kind of particles, i. e. the Dark Matter (DM) that provides the potential wells in which structures create, while the second one is presence of the Dark Energy (DE), the simplest form of which is represented by the Cosmological Constant Λ, that sources the acceleration in the expansion of our Universe. These two features are summarized by the acronym ΛCDM, which is an abbreviation used to refer to the present Standard Cosmological Model. Although the Standard Cosmological Model shows a remarkably successful agreement with most of the available observations, it presents some longstanding unsolved problems. A possible way to solve these problems is represented by the introduction of a dynamical Dark Energy, in the form of the scalar field ϕ. In the coupled DE models, the scalar field ϕ features a direct interaction with matter in different regimes. Cosmic voids are large under-dense regions in the Universe devoided of matter. Being nearby empty of matter their dynamics is supposed to be dominated by DE, to the nature of which the properties of cosmic voids should be very sensitive. This thesis work is devoted to the statistical and geometrical analysis of cosmic voids in large N-body simulations of structure formation in the context of alternative competing cosmological models. In particular we used the ZOBOV code (see ref. Neyrinck 2008), a publicly available void finder algorithm, to identify voids in the Halos catalogues extraxted from CoDECS simulations (see ref. Baldi 2012 ). The CoDECS are the largest N-body simulations to date of interacting Dark Energy (DE) models. We identify suitable criteria to produce voids catalogues with the aim of comparing the properties of these objects in interacting DE scenarios to the standard ΛCDM model, at different redshifts. This thesis work is organized as follows: in chapter 1, the Standard Cosmological Model as well as the main properties of cosmic voids are intro- duced. In chapter 2, we will present the scalar field scenario. In chapter 3 the tools, the methods and the criteria by which a voids catalogue is created are described while in chapter 4 we discuss the statistical properties of cosmic voids included in our catalogues. In chapter 5 the geometrical properties of the catalogued cosmic voids are presented by means of their stacked profiles. In chapter 6 we summarized our results and we propose further developments of this work.
Resumo:
It has been proposed recently the existence of a non-minimal coupling between a canonical scalar field (quintessence) and gravity in the framework of teleparallel gravity, motivated by similar constructions in the context of General Relativity. The dynamics of the model, known as teleparallel dark energy, has been further developed, but no scaling attractor has been found. Here we consider a model in which the non-minimal coupling is ruled by a dynamically changing coefficient α≡f,φ/(f)1/2, with f(φ) an arbitrary function of the scalar field φ. It is shown that in this case the existence of scaling attractors is possible, which means that the universe will eventually enter these scaling attractors, regardless of the initial conditions. As a consequence, the cosmological coincidence problem could be alleviated without fine-tunings. © 2013 IOP Publishing Ltd and Sissa Medialab srl.
Resumo:
We use the recent results on dark matter searches of the 22-string IceCube detector to probe the remaining allowed window for strongly interacting dark matter in the mass range 10(4) < m(X) < 10(15) GeV. We calculate the expected signal in the 22-string IceCube detector from the annihilation of such particles captured in the Sun and compare it to the detected background. As a result, the remaining allowed region in the mass versus cross section parameter space is ruled out. We also show the expected sensitivity of the complete IceCube detector with 86 strings.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
We analyze the interaction between dark energy and dark matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from dark matter into dark energy, characterized by a negative parameter Q. We find that, if at least one of the fluids has nonvanishing chemical potential, for instance mu(x)< 0 and mu(dm)=0 or mu(x)=0 and mu(dm)> 0, the decay is possible, where mu(x) and mu(dm) are the chemical potentials of dark energy and dark matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the dark matter decay is favored with a probability of similar to 93% over the dark energy decay. This result comes from a likelihood analysis where only background evolution has been considered.
Resumo:
We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.