979 resultados para INTENSITY DISTRIBUTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To calculate static response properties of a many-body system, local density approximation (LDA) can be safely applied. But, to obtain dynamical response functions, the applicability of LDA is limited bacause dynamics of the system needs to be considered as well. To examine this in the context of cold atoms, we consider a system of non-interacting spin4 fermions confined by a harmonic trapping potential. We have calculated a very important response function, the spectral intensity distribution function (SIDF), both exactly and using LDA at zero temperature and compared with each other for different dimensions, trap frequencies and momenta. The behaviour of the SIDF at a particular momentum can be explained by noting the behaviour of the density of states (DoS) of the free system (without trap) in that particular dimension. The agreement between exact and LDA SIDFs becomes better with increase in dimensions and number of particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the laser induced thermal fatigue simulation test on pistons, the high power laser was transformed from the incident Gaussian beam into a concentric multi-circular pattern with specific intensity ratio. The spatial intensity distribution of the shaped beam, which determines the temperature field in the piston, must be designed before a diffractive optical element (DOE) can be manufactured. In this paper, a reverse method based on finite element model (FEM) was proposed to design the intensity distribution in order to simulate the thermal loadings on pistons. Temperature fields were obtained by solving a transient three-dimensional heat conduction equation with convective boundary conditions at the surfaces of the piston workpiece. The numerical model then was validated by approaching the computational results to the experimental data. During the process, some important parameters including laser absorptivity, convective heat transfer coefficient, thermal conductivity and Biot number were also validated. Then, optimization procedure was processed to find favorable spatial intensity distribution for the shaped beam, with the aid of the validated FEM. The analysis shows that the reverse method incorporated with numerical simulation can reduce design cycle and design expense efficiently. This method can serve as a kind of virtual experimental vehicle as well, which makes the thermal fatigue simulation test more controllable and predictable. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional distribution of light intensity that is modulated by a pure phase-shifting apodizer is studied. Results show that the Strehl ratio can be altered by the proposed apodizer and by the waist width of incident Gaussian beams. By changing geometrical parameters of the proposed apodizer, we can increase the focal depth to several times that of the original system. The proposed apodizer can also be used to realize focal splitting and local minimum of intensity, which may be advantageous for constructing an optical trap. Furthermore, the local minimum of intensity number is tunable by changing the parameters of the apodizer. (c) 2005 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform (FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicating the good thermal stability of InnoSlab laser. Such a new kind of laser can be designed and optimized on the base of this simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The far-field intensity distribution (FFID) of a beam generated by a phase-unifying mirror resonator was investigated based on scalar diffraction theory. Attention was paid to the parameters, such as obscuration ratio and reflectivity of the phase-unifying mirror, that determine the FFID. All analyses were limited to the TEM00 fundamental mode. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on scalar diffraction theory, we investigated far-field intensity distribution (FFID) of beam generated by Gaussian mirror resonator. We found usable analytical expressions of diffracted field with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and radius of the Gaussian mirror, which determine the FFID. All analyses were limited to TEM00 fundamental mode. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated M-2 factor and far-field distribution of beams generated by Gaussian mirror resonator. And we found usable analytical expressions of the M2 factor and the far-field distribution intensity with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and reflectance of the Gaussian mirror. (c) 2006 Elsevier GrnbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology, fluorescence-intensity distribution analysis, has been developed for confocal microscopy studies in which the fluorescence intensity of a sample with a heterogeneous brightness profile is monitored. An adjustable formula, modeling the spatial brightness distribution, and the technique of generating functions for calculation of theoretical photon count number distributions serve as the two cornerstones of the methodology. The method permits the simultaneous determination of concentrations and specific brightness values of a number of individual fluorescent species in solution. Accordingly, we present an extremely sensitive tool to monitor the interaction of fluorescently labeled molecules or other microparticles with their respective biological counterparts that should find a wide application in life sciences, medicine, and drug discovery. Its potential is demonstrated by studying the hybridization of 5′-(6-carboxytetramethylrhodamine)-labeled and nonlabeled complementary oligonucleotides and the subsequent cleavage of the DNA hybrids by restriction enzymes.