972 resultados para INTENSE EXERCISE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of increased training (IT) load on plasma concentrations of lipopolysaccharides (LPS), proinflammatory cytokines, and anti-LPS antibodies during exercise in the heat were investigated in 18 male runners, who performed 14 days of normal training (NT) or 14 days of 20% IT load in 2 equal groups. Before (trial 1) and after (trial 2) the training intervention, all subjects ran at 70% maximum oxygen uptake on a treadmill under hot (35 degrees C) and humid (similar to 40%) conditions, until core temperature reached 39.5 degrees C or volitional exhaustion. Venous blood samples were drawn before, after, and 1.5 h after exercise. Plasma LPS concentration after exercise increased by 71% (trial 1, p < 0.05) and 21% (trial 2) in the NT group and by 92% (trial 1, p < 0.01) and 199% (trial 2, p < 0.01) in the IT group. Postintervention plasma LPS concentration was 35% lower before exercise (p < 0.05) and 47% lower during recovery (p < 0.01) in the IT than in the NT group. Anti-LPS IgM concentration during recovery was 35% lower in the IT than in the NT group (p < 0.05). Plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha concentrations after exercise (IL-6, 3-7 times, p < 0.01, and TNF-alpha, 33%, p < 0.01) and during recovery (IL-6, 2-4 times, p < 0.05, and TNF-alpha, 30%, p < 0.01) were higher than at rest within each group. These data suggest that a short-term tolerable increase in training load may protect against developing endotoxemia during exercise in the heat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counter-balanced. Blood was drawn immediately before and after exercise, and 1 h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P<0.05), plasma concentrations of glucose (CHO, 43%; P<0.05), lactate (CHO, 130%; placebo, 130%; P<0.01), cortisol (CHO, 100%; placebo, 161%; P<0.01), myoglobin (CHO, 194%; placebo, 342%; P<0.01) all increased significantly. One hour post-exercise, plasma myoglobin concentration (CHO, 331%; placebo, 482%; P<0.01) and neutrophil count (CHO, 151%; placebo, 230% P<0.01) both increased further above baseline. CHO significantly attenuated plasma myoglobin concentration and the neutrophil count after exercise (P<0.01), but did not affect plasma cortisol concentration. The effects of CHO on plasma myoglobin concentration may be due to alterations in cytokine synthesis, insulin responses or myoglobin clearance rates from the bloodstream during exercise. Plasma cortisol responses to CHO during exercise may depend on the intensity of exercise, or the amount of CHO consumed. Lastly, cortisol appears to play a minor role in the mobilisation of neutrophils after intense exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, CINC-2 alpha/beta, MIP-3 alpha, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1 beta (3.3-fold) and TNF-alpha (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counterbalanced. Blood was drawn immediately before and after exercise, and I h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P < 0.05), plasma concentrations of glucose (CHO, 43%; P

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction Intense exercise induced acidosis occurs from the accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract any detrimental effect of acidosis and benefit performance. The aim of this study was to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance in healthy males. Methods Five males ingested either ß-alanine (BAl) (4.8 g.d-1 for 4wk, then 6.4 g.d-1 for 2wk) or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Following supplementation, participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test of 5 x 6s, with 24s rest periods, was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of their max workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with magnetic resonance spectrometry was performed in the soleus and gastrocnemius. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Results Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively with 6 wk supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate in the BAl condition was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. FIG. 1: Changes in carnosine concentration in the gastrocnemius prior and post 6 week chronic supplementation of placebo and β-alanine. Values expressed as mean.* p<0.05 from Pl at 6 weeks, # p<0.05 from pre supplementation. Conclusion/Discussion Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. However, this only translated into enhanced performance during the CCT110% high intensity cycling exercise protocol, with no change observed during the RSA test. No differences in post exercise and recovery plasma lactates and blood pH, indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple bout high intensity exercise. Changes in plasma lactate during recovery supports that ß-alanine supplementation may affect anaerobic metabolism however during single bout high intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intense exercise induced acidosis occurs after accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract detrimental effects of acidosis and benefit performance. This study aimed to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance. Five healthy males ingested either ß-alanine or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of maximum workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with in vivo magnetic resonance spectrometry was performed in the soleus and gastrocnemius muscle. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively after supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate after BAI was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. This translated into enhanced performance during the CCT110% high intensity cycling exercise protocol but not during the RSA test. The lack of change in plasma lactate or blood pH indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple-bout high-intensity exercise. Changes measured in plasma lactate during recovery support the hypothesis that ß-alanine supplementation may affect anaerobic metabolism particularly during single bout high intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction β-alanine (BAl) and NaHCO3 (SB) ingestion may provide performance benefits by enhancing concentrations of their respective physiochemical buffer counterparts, muscle carnosine and blood bicarbonate, counteracting acidosis during intense exercise. This study examined the effect of BAl and SB co-supplementation as an ergogenic strategy during high-intensity exercise. Methods Eight healthy males ingested either BAl (4.8 g day−1 for 4 weeks, increased to 6.4 g day−1 for 2 weeks) or placebo (Pl) (CaCO3) for 6 weeks, in a crossover design (6-week washout between supplements). After each chronic supplementation period participants performed two trials, each consisting of two intense exercise tests performed over consecutive days. Trials were separated by 1 week and consisted of a repeated sprint ability (RSA) test and cycling capacity test at 110 % Wmax (CCT110 %). Placebo (Pl) or SB (300 mg kgbw−1) was ingested prior to exercise in a crossover design to creating four supplement conditions (BAl-Pl, BAl-SB, Pl–Pl, Pl-SB). Results Carnosine increased in the gastrocnemius (n = 5) (p = 0.03) and soleus (n = 5) (p = 0.02) following BAl supplementation, and Pl-SB and BAl-SB ingestion elevated blood HCO3 − concentrations (p < 0.01). Although buffering capacity was elevated following both BAl and SB ingestion, performance improvement was only observed with BAl-Pl and BAl-SB increasing time to exhaustion of the CCT110 % test 14 and 16 %, respectively, compared to Pl–Pl (p < 0.01). Conclusion Supplementation of BAl and SB elevated buffering potential by increasing muscle carnosine and blood bicarbonate levels, respectively. BAl ingestion improved performance during the CCT110 %, with no aggregating effect of SB supplementation (p > 0.05). Performance was not different between treatments during the RSA test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to monitor ovarian hormone function response to intense exercise and body weight changes in female athletes. Ovarian hormone function was evaluated in 12 female lightweight rowers and 10 age-height-weight matched sedentary controls. Ovarian hormone function was assessed during consecutive competition season and off season, by measurement of peak and average alternative day overnight urinary oestrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion. Competition season was associated with a 5.8 kg (9.3%) body weight loss in the lightweight rowers. Significantly lower competition season peak and average urinary excretion of PdG were found in the lightweight rowers compared with the controls. Lower competition season peak and average urinary excretion of E1G were also found in the lightweight rowers compared with the controls, but the difference did not reach significance. The number of rowing training hours was a significant determinant of peak PdG excretion in the rowers (R2 = 0.40; p<0.02). The seasonal suppression of PdG excretion was associated with degree of weight loss (R2 = 0.46; p<0.01). The competition related decrease in E1G and PdG excretion for the lightweight rowers was predominantly restored during the off season when exercise intensity and duration were decreased and body weight increased. These results showed a significant (p<0.05) reduction in progesterone metabolite excretion and a non-significant decrease in oestrone metabolite excretion associated with intensive competition season training loads and body weight reduction in female lightweight rowers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to assess the appearance of cardiac troponins (cTnI and/or cTnT) after a short bout (30 s) of ‘all-out’ intense exercise and to determine the stability of any exercise-related cTnI release in response to repeated bouts of high intensity exercise separated by 7 days recovery. Eighteen apparently healthy, physically active, male university students completed two all-out 30 s cycle sprint, separated by 7 days. cTnI, blood lactate and catecholamine concentrations were measured before, immediately after and 24 h after each bout. Cycle performance, heart rate and blood pressure responses to exercise were also recorded. Cycle performance was modestly elevated in the second trial [6·5% increase in peak power output (PPO)]; there was no difference in the cardiovascular, lactate or catecholamine response to the two cycle trials. cTnI was not significantly elevated from baseline through recovery (Trial 1: 0·06 ± 0·04 ng ml−1, 0·05 ± 0·04 ng ml−1, 0·03 ± 0·02 ng ml−1; Trial 2: 0·02 ± 0·04 ng ml−1, 0·04 ± 0·03 ng ml−1, 0·05 ± 0·06 ng ml−1) in either trial. Very small within subject changes were not significantly correlated between the two trials (r = 0·06; P>0·05). Subsequently, short duration, high intensity exercise does not elicit a clinically relevant response in cTnI and any small alterations likely reflect the underlying biological variability of cTnI measurement within the participants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gastrointestinal problems are common, especially in endurance athletes, and often impair performance or subsequent recovery. Generally, studies suggest that 30-50 % of athletes experience such complaints. Most gastrointestinal symptoms during exercise are mild and of no risk to health, but hemorrhagic gastritis, hematochezia, and ischemic bowel can present serious medical challenges. Three main causes of gastrointestinal symptoms have been identified, and these are either physiological, mechanical, or nutritional in nature. During intense exercise, and especially when hypohydrated, mesenteric blood flow is reduced; this is believed to be one of the main contributors to the development of gastrointestinal symptoms. Reduced splanchnic perfusion could result in compromised gut permeability in athletes. However, although evidence exists that this might occur, this has not yet been definitively linked to the prevalence of gastrointestinal symptoms. Nutritional training and appropriate nutrition choices can reduce the risk of gastrointestinal discomfort during exercise by ensuring rapid gastric emptying and the absorption of water and nutrients, and by maintaining adequate perfusion of the splanchnic vasculature. A number of nutritional manipulations have been proposed to minimize gastrointestinal symptoms, including the use of multiple transportable carbohydrates, and potentially the use of nutrients that stimulate the production of nitric oxide in the intestine and thereby improve splanchnic perfusion. However, at this stage, evidence for beneficial effects of such interventions is lacking, and more research needs to be conducted to obtain a better understanding of the etiology of the problems and to improve the recommendations to athletes.