195 resultados para INTELLIGIBILITY
Resumo:
Purpose: The classic study of Sumby and Pollack (1954, JASA, 26(2), 212-215) demonstrated that visual information aided speech intelligibility under noisy auditory conditions. Their work showed that visual information is especially useful under low signal-to-noise conditions where the auditory signal leaves greater margins for improvement. We investigated whether simulated cataracts interfered with the ability of participants to use visual cues to help disambiguate the auditory signal in the presence of auditory noise. Methods: Participants in the study were screened to ensure normal visual acuity (mean of 20/20) and normal hearing (auditory threshold ≤ 20 dB HL). Speech intelligibility was tested under an auditory only condition and two visual conditions: normal vision and simulated cataracts. The light scattering effects of cataracts were imitated using cataract-simulating filters. Participants wore blacked-out glasses in the auditory only condition and lens-free frames in the normal auditory-visual condition. Individual sentences were spoken by a live speaker in the presence of prerecorded four-person background babble set to a speech-to-noise ratio (SNR) of -16 dB. The SNR was determined in a preliminary experiment to support 50% correct identification of sentence under the auditory only conditions. The speaker was trained to match the rate, intensity and inflections of a prerecorded audio track of everyday speech sentences. The speaker was blind to the visual conditions of the participant to control for bias.Participants’ speech intelligibility was measured by comparing the accuracy of their written account of what they believed the speaker to have said to the actual spoken sentence. Results: Relative to the normal vision condition, speech intelligibility was significantly poorer when participants wore simulated catarcts. Conclusions: The results suggest that cataracts may interfere with the acquisition of visual cues to speech perception.
Resumo:
This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.
Resumo:
Intelligible and accurate risk-based decision-making requires a complex balance of information from different sources, appropriate statistical analysis of this information and consequent intelligent inference and decisions made on the basis of these analyses. Importantly, this requires an explicit acknowledgement of uncertainty in the inputs and outputs of the statistical model. The aim of this paper is to progress a discussion of these issues in the context of several motivating problems related to the wider scope of agricultural production. These problems include biosecurity surveillance design, pest incursion, environmental monitoring and import risk assessment. The information to be integrated includes observational and experimental data, remotely sensed data and expert information. We describe our efforts in addressing these problems using Bayesian models and Bayesian networks. These approaches provide a coherent and transparent framework for modelling complex systems, combining the different information sources, and allowing for uncertainty in inputs and outputs. While the theory underlying Bayesian modelling has a long and well established history, its application is only now becoming more possible for complex problems, due to increased availability of methodological and computational tools. Of course, there are still hurdles and constraints, which we also address through sharing our endeavours and experiences.
Resumo:
Limited research is available on how well visual cues integrate with auditory cues to improve speech intelligibility in persons with visual impairments, such as cataracts. We investigated whether simulated cataracts interfered with participants’ ability to use visual cues to help disambiguate a spoken message in the presence of spoken background noise. We tested 21 young adults with normal visual acuity and hearing sensitivity. Speech intelligibility was tested under three conditions: auditory only with no visual input, auditory-visual with normal viewing, and auditory-visual with simulated cataracts. Central Institute for the Deaf (CID) Everyday Speech Sentences were spoken by a live talker, mimicking a pre-recorded audio track, in the presence of pre-recorded four-person background babble at a signal-to-noise ratio (SNR) of -13 dB. The talker was masked to the experimental conditions to control for experimenter bias. Relative to the normal vision condition, speech intelligibility was significantly poorer, [t (20) = 4.17, p < .01, Cohen’s d =1.0], in the simulated cataract condition. These results suggest that cataracts can interfere with speech perception, which may occur through a reduction in visual cues, less effective integration or a combination of the two effects. These novel findings contribute to our understanding of the association between two common sensory problems in adults: reduced contrast sensitivity associated with cataracts and reduced face-to-face communication in noise.
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
This study evaluates the Speech Intelligibility Index (SII) as a tool to describe hearing loss and predict when hearing aids would be appropriate for pediatric oncology patients who have received or are currently receiving cisplatin. The efficacy of the SII is compared to the Brock grade which is commonly used for patients with ototoxic hearing loss secondary to cisplatin treatment. The SII is a discrete measure that precisely reflects the patient’s functional hearing status and is highly correlated with the need for audiologic intervention.
Resumo:
This dissertation examines the frequency response that results in the maximum level of speech intelligibility for persons with noise-induced hearing loss.
Resumo:
This paper reviews a study to examine the effects on lip reading performance of word position within a sentence.
Resumo:
This paper examines the effect of amplification bandwidth on speech intelligibility using multiple speech samples.
Resumo:
This paper reviews a speech intelligibility experiment using the same subjects as both talkers and listeners.
Resumo:
This paper discusses several tests used to measure speech intelligibility and speech discrimination.