965 resultados para INNER JET
Resumo:
Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.
Resumo:
This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.
Resumo:
I review models for the "inner jet" in blazars, the section that connects the central engine with the radio jet. I discuss how the structure and physics of the inner jet can be explored using millimeter-wave VLBI (very-long-baseline radio interferometry) as well as multiwaveband observations of blazars. Flares at radio to gamma-ray frequencies should exhibit time delays at different wavebands that can test models for both the high-energy emission mechanisms and the nature of the inner jet in blazars.
Resumo:
We present radio images of the compact steep spectrum (CSS) quasar 3C 286 acquired with the Very Large Array (VLA) at 8.4 and 22.5 GHz. The source exhibits a two-sided core-jet structure with a bright central component and two extended components one to the east (P.A. 100degrees) and another to the southwest (P.A. -116degrees). From the compact core, an extension runs towards the southwest component up to similar to 0.7 arcsecond. The emission between the primary central component and the southwest component exhibits a knotty structure. A gradual change of the jet position angles from -135degrees to -120degrees in the inner southwest jet suggests a local bend. The position angle changes of the major eastern components E2 and E1 suggest that the eastern jet likely follows a curved trace. The bends in the jet trace may be associated with a relativistic precession or some interaction between the jet and the ambient matter. A mean spectral index of alpha(8.4)(22.5) similar to -0.76 (S-nu proportional to nu(alpha)) is estimated for the core component. Steep spectra are also obtained for the extended southwest component (2.6", P.A. -116degrees) and eastern component (0.8", P.A. 100degrees), with alpha(8.4)(22.5) similar to -0.88 and alpha(8.4)(22.5) similar to -1.79, respectively. The radio morphologies and spectral index distributions suggest that the core seen in our images is likely to be the beamed inner jet while the real nucleus is dimmed by it beaming away from us.
Resumo:
Evidence of jet precession in many galactic and extragalactic sources has been reported in the literature. Much of this evidence is based on studies of the kinematics of the jet knots, which depends on the correct identification of the components to determine their respective proper motions and position angles on the plane of the sky. Identification problems related to fitting procedures, as well as observations poorly sampled in time, may influence the follow-up of the components in time, which consequently might contribute to a misinterpretation of the data. In order to deal with these limitations, we introduce a very powerful statistical tool to analyse jet precession: the cross-entropy method for continuous multi-extremal optimization. Only based on the raw data of the jet components (right ascension and declination offsets from the core), the cross-entropy method searches for the precession model parameters that better represent the data. In this work we present a large number of tests to validate this technique, using synthetic precessing jets built from a given set of precession parameters. With the aim of recovering these parameters, we applied the cross-entropy method to our precession model, varying exhaustively the quantities associated with the method. Our results have shown that even in the most challenging tests, the cross-entropy method was able to find the correct parameters within a 1 per cent level. Even for a non-precessing jet, our optimization method could point out successfully the lack of precession.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
The jet characteristics and the fluid flow pattern in a continuous slab caster have been studied using a water model. The fluid jet is studied under free fall and submerged discharge conditions. In the latter case, the jet was followed by dye-injection technique and image analyser was used to find out the effect of nozzle parameters on jet-spread angle, jet-discharge angle and the volume entrainment by the jet. All free-fall jets with nozzle port angle zero and upward are found to be spinning. Some of the free-fall jets with downward nozzle-port angle are found to be spinning and rest are smooth. The spinning direction of the jets are found to change with time. The well depth, port diameter and the inner diameter of the nozzle have a clear effect on the free-fall jets with downward port angle. The jet-spread angle is found to be about 17-degrees for smooth jets. The spread angle for spinning jet increases as the nozzle-port angle is increased from downward 25 to upward 15-degrees. The jet-discharge angle is always downward even when the nozzle-discharge ports are angled upward. The extent of volume entrainment by the spinning jet is higher and it increases as the nozzle-port angle is increased from 25 downward to 15-degrees upward.
Resumo:
Converging swirling liquid jets from pressure swirl atomizers injected into atmospheric air are studied experimentally using still and cine photographic techniques in the context of liquid-liquid coaxial swirl atomizers used in liquid rocket engines. The jet exhibits several interesting flow features in contrast to the nonswirling liquid jets (annular liquid jets) studied in the literature. The swirl motion creates multiple converging sections in the jet, which gradually collapse one after the other due to the liquid sheet breakup with increasing Weber number (We). This is clearly related to the air inside the converging jet which exhibits a peculiar variation of the pressure difference across the liquid sheet, DeltaP, with We. The variation shows a decreasing trend of DeltaP with We in an overall sense, but exhibits local maxima and minima at specific flow conditions. The number of maxima or minima observed in the curve depends on the number of converging sections seen in the jet at the lowest We. An interesting feature of this variation is that it delineates the regions of prominent jet flow features like the oscillating jet region, nonoscillating jet region, number of converging sections, and so on. Numerical predictions of the jet characteristics are obtained by modifying an existing nonswirling liquid jet model by including the swirling motion. The comparison between the experimental and numerical measurements shows that the pressure difference across the liquid sheet is important for the jet behavior and cannot be neglected in any theoretical analysis. (C) 2002 American Institute of Physics.
Resumo:
Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.
Resumo:
We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.
Resumo:
An experimental setup and a simple reconstruction method are presented to measure velocity fields inside slightly tapering cylindrical liquid jets traveling through still air. Particle image velocimetry algorithms are used to calculate velocity fields from high speed images of jets of transparent liquid containing seed particles. An inner central plane is illuminated by a laser sheet pointed at the center of the jet and visualized through the jet by a high speed camera. Optical distortions produced by the shape of the jet and the difference between the refractive index of the fluid and the surrounding air are corrected by using a ray tracing method. The effect of the jet speed on the velocity fields is investigated at four jet speeds. The relaxation rate for the velocity profile downstream of the nozzle exit is reasonably consistent with theoretical expectations for the low Reynolds numbers and the fluid used, although the velocity profiles are considerably flatter than expected. © 2012 American Society of Mechanical Engineers.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
As the economic and social benefits of creative industries development become increasingly visible, policymakers worldwide are working to create policy drivers to ensure that certain places become or remain ‘creative places’. Richard Florida’s work has become particularly influential among policymakers, as has Landry’s. But as the first wave of creative industrial policy development and implementation wanes, important questions are emerging. It is by now clear that an ‘ideal creative place’ has arisen from creative industries policy and planning literature, and that this ideal place is located in inner cities. This article shifts its focus away from the inner city to where most Australians live: the outer suburbs. It reports on a qualitative research study into the practices of outer-suburban creative industries workers in Redcliffe, Australia. It argues that the accepted geography of creative places requires some recalibration once the material and experiential aspects of creative places are taken into account.
Resumo:
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy.