884 resultados para INFRARED-SPECTRUM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in two of the infrared‐active perpendicular bands of C2H4 vapor: the Type b fundamental band, ν10, at 826 cm—1, and the Type c fundamental band, ν7, at 949 cm—1. Many of the individual PP and RR branch lines have been observed. The analysis has been confined to values of the quantum number K≥3, for which energy levels ethylene shows no detectable deviations from a symmetric‐top rotational structure. The analysis reveals a Coriolis interaction between ν7 and ν10, and between ν4 and ν10, and values of the Coriolis constants ζ7,10z and ζ4,10y are obtained; these are related to normal coordinate calculations for the appropriate symmetry species, and force constants are derived to fit the observed zeta constants. The band center of ν10 has been revised from the original figure of 810 cm—1 to the new value, 826 cm—1, and the inactive frequency ν4 is estimated to lie at 1023±3 cm—1, in good agreement with the previous estimate of 1027 cm—1. The change in the value of ν10 leads to a suggested change in the value of the Raman‐active fundamental ν6 from 1236 to 1222 cm—1. New combination bands have been observed at 2174 cm—1, assigned as ν3+ν10; and at 2252 cm—1, assigned as ν4+ν6; also rotational structure has been resolved and analyzed in the ν6+ν10 band at 2048 cm—1. The new data obtained for the C2H4 molecule are summarized in Table XII, with all of the other data presently available on the vibrational and rotational constants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution infrared spectra of the ν9 and ν10 perpendicular fundamentals of the allene molecule are reported, in which the J structure in the sub-bands has been partially resolved. Analysis of the latter shows that the vibrational origin ν9 = 999 cm−1, some 35 cm−1 below previous assignments. The pronounced asymmetry in the intensity distribution of the rotational structure which this assignment implies is shown to be expected theoretically, due to the Coriolis perturbations involved, and it is interpreted in terms of the sign and magnitude of the ratio of the dipole moment derivatives in the two fundamentals. The results of this analysis are shown to be in good agreement with observations on allene-1.1-d2, where similar intensity perturbations are observed, and with an independent analysis of the ν8 band of allene-h4. The A rotational constant of allene-h4 is found to have the value 4.82 ± 0.01 cm−1, and for the molecular geometry we obtain r(CH) = 1.084 A, r(CC) = 1.308 A, and HCH = 118.4°. A partial analysis of the rotational structure of the hot bands (ν9 + ν11 − ν11) and (ν10 + ν11 − ν11) is presented; these provide an example of a strong Coriolis interaction between nearly degenerate A1A2 and B1B2 pairs of vibrational levels. Some localized rotational perturbations in the ν9 and ν10 fundamentals are also noted, and their possible interpretations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infrared spectrum of carbon suboxide has been recorded from 1800 to 2600 cm−1 at a resolution of 0.003 cm−1. About 7% of the ca. 40 000 lines observed have been assigned and analyzed, belonging to 36 different bands. Most of these are associated with the fundamental ν3, at 2289.80 cm−1, and the combination band ν2 + ν4, at 2386.61 cm−1, each of which give rise to a system of sum bands, difference bands, and hot bands involving the low-wave-number fundamental ν7 at 18 cm−1. A few other tentative assignments are made. The bands have been analyzed for vibrational and rotational constants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infrared spectrum of the stretching fundamentals of SiF2 has been obtained at a resolution of ≈ 0.1 cm−1 using a FTIR spectrometer. The spectrum has been analysed using computer simulation based on a coupled hamiltonian for v1 and v3, giving v1 = 855.01 cm−1 and v3 = 870.40 cm−1. The relative magnitude and sign of the vibrational transition moments has been determined from the ξC13 Coriolis coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High‐resolution infrared spectra of B2H6 vapor are reported. The sample was prepared from the naturally occurring 11B☒10B isotopic mixture. The rotational structure of the infrared bands has been analysed for Coriolis perturbations due to rotation about the axis of least moment of inertia (the B⋅⋅⋅B axis). The following results have been obtained: (a) interaction between the Type A fundamental ν18 and the inactive fundamental ν5 has been observed, thus confirming the assignment of ν5 at 833 cm—1, giving ∣ ζ5,18Z ∣=0.55±0.05; (b) interaction observed between the Type A combination band (ν10+ν12) at 1283 cm—1 and the inactive combination (ν10+ν7) gives an estimate of the unobserved fundamental ν7 as 850±30 cm—1, and an estimate of ∣ ζ7,12Z ∣=0.6±0.1; (c) the absence of any observed perturbation of the Type C fundamental ν14 at 973 cm—1, suggests, by negative arguments, that either the unobserved fundamental ν9 does not lie in the frequency range 900 to 1100 cm—1, or ∣ ζ9,14Z ∣<0.2. The assignment of the unobserved fundamental vibrations of diborane is discussed in the light of this evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several high-order vibration-rotation perturbations in the high-resolution infrared spectrum of monofluoroacetylene, HCCF, are assigned and analyzed in detail. They result in avoided crossings in the rotational structure of several bands, and precise values for the effective high-order terms in the Hamiltonian have been determined. The significance of these results for intramolecular vibrational redistribution is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of rotational-pucker-vibrational transitions in the vibrational spectrum of cyclobutane is reviewed. Puckering sideband structure on the 1453 cm-1v14 infra-red fundamental of C4H8 has been observed and analysed, in terms of two slightly different puckering potential functions for the ground and the excited vibrational states. The results have been fitted to quartic-quadratic potential functions in the puckering coordinate, with a barrier to inversion of 503 cm-1 (1•44 kcal mole-1 = 6•02 kJ mole-1) in the ground state and 491 cm-1 in the excited state ν14 = 1. For reasonable assumptions about the reduced mass, the equilibrium dihedral angle of the C4 ring is determined to be about 35°, in agreement with previous estimates. Ueda and Shimanouchi's observations on the 2878 cm-1 C4H8 band have been re-analysed, and puckering sidebands have also been observed and analysed for the 1083 cm-1v14 infra-red fundamental of C4D8. Pure puckering transitions have been observed in the Raman spectrum of C4H8 vapour. All of these observations are shown to be consistent with the same ground state puckering potential function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infrared spectrum of carbon suboxide has been recorded with a resolution of 0•01cm-1 from 400 to 700 cm-1. The region from 530 to 570 cm-1 shows intense absorption due to the v6(Πu) band system, of which the fundamental band only has been assigned and analysed, giving v6=540•221 cm-1. The region 590 to 660 cm-1 shows weaker absorption due to the v5(Πg) band system appearing in combination with odd quanta of the v7(Πu) fundamental at 18 cm-1. The v5 + v7 band and several hot bands have been assigned and analysed, and the effective v7 bending potential in the v5 state has been deduced. This potential shows a splitting as the large amplitude bending coordinate q7 is displaced due to interaction between v5 and v7 analogous to the Renner-Teller effect in electronic spectroscopy. This splitting is about 4 cm-1 for the classical turning points in q7 and the mean q7 bending potential is closely similar to that in the ground state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier transform IR spectra in the ν2 and ν3 regions between 800 and 1500 cm−1 have been measured of H16OF with a resolution of 0.007 cm−1 and of H18OF and DOF with a resolution of 0.040 cm−1. Ground state constants have been improved for H16OF and have been obtained for the first time for H18OF. Parameters of the v2 = 1 and v3 = 1 excited states have been determined from rovibrational analyses of ca. 1000 ν2/ν3 lines which were fitted with σ 0.36, 4.5, and 7.6 × 10−3 cm−1 for H16OF, H18OF, and D16OF, respectively. Band centers of ν2/ν3 are 1353.40466(5)/889.07974(6), 1350.3976(5)/862.2967(7), and 1002.0083(9)/891.0014(15) cm−1, respectively, for the three isotopic species. While ν2 and ν3 are sufficiently separated in HOF to be treated independently, a Coriolis resonance is evident in DOF, the interaction constant ξ23c = 0.19073(16) cm−1 being in agreement with the prediction from the harmonic force field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanoacetylene HC3N is a molecule of great astronomical importance and it has been observed in many interstellar environments. Its deuterated form DC3N has been detected in number of sources from external galaxies to Galactic interstellar clouds, star-forming regions and planetary atmospheres. All these detections relied on previous laboratory investigations, which however still lack some essential information concerning its infrared spectrum. In this project, high-resolution ro-vibrational spectra of DC3N have been recorded in two energy regions: 150 – 450 cm-1 and 1800 – 2800 cm-1. In the first window the ν7← GS, 2ν7 ← ν7, ν5 ← ν7, ν5+ν7 ← 2ν7, ν6+ν7 → 2v7, 4ν7 ← 2ν7 bands have been assigned, while in the second region the three stretching fundamental bands ν1, ν2, ν3 have been observed and analysed. The 150 – 450 cm-1 region spectra have been recorded at the AILES beamline at the SOLEIL synchrotron (France), the 1800 – 2800 cm-1 spectra at the Department of Industrial Chemistry “Toso Montanari” in Bologna. In total, 2299 transitions have been assigned. Such experimental transition, together with data previously recorded for DC3N, were included in a least-squares fitting procedure from which several spectroscopic parameters have been determined with high precision and accuracy. They include rotational, vibrational and resonance constants. The spectroscopic data of DC3N have been included in a line catalog for this molecule in order to assist future astronomical observations and data interpretation. A paper which includes this research work has been published (M. Melosso, L. Bizzocchi, A. Adamczyk, E. Cane, P. Caselli, L. Colzid, L. Dorea, B. M. Giulianob, J.-C. Guillemine, M-A. Martin-Drumel, O. Piralif, A. Pietropolli Charmet , D. Prudenzano, V. M. Rivillad, F. Tamassia, Extensive ro-vibrational analysis of deuterated-cyanoacetylene (DC3N) from millimeter wavelengths to the infrared domain, Jour. of Quant. Spectr. and Rad. Tran. 254, 107221, 2020).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microwave spectrum of 1-pyrazoline has been observed from 18 to 40 GHz in the six lowest states of the ring-puckering vibration. It is an a-type spectrum of a near oblate asymmetric top. Each vibrational state has been fitted to a separate effective Hamiltonian, and the vibrational dependence of both the rotational constants and the quartic centrifugal distortion constants has been observed and analyzed. The v = 0 and 1 states have also been analyzed using a coupled Hamiltonian; this gives consistent results, with an improved fit to the high J data. The preferred choice of Durig et al. [J. Chem. Phys. 52, 6096 (1970)] for the ring-puckering potential is confirmed as essentially correct, but the A and B inertial axes are shown to be interchanged from those assumed by Durig et al. in their analysis of the mid-infrared spectrum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.