946 resultados para INFORMATION-TRANSFER
Resumo:
Aim. This paper is a report of a review conducted to identify (a) best practice in information transfer from the emergency department for multi-trauma patients; (b) conduits and barriers to information transfer in trauma care and related settings; and (c) interventions that have an impact on information communication at handover and beyond. Background. Information transfer is integral to effective trauma care, and communication breakdown results in important challenges to this. However, evidence of adequacy of structures and processes to ensure transfer of patient information through the acute phase of trauma care is limited. Data sources. Papers were sourced from a search of 12 online databases and scanning references from relevant papers for 1990–2009. Review methods. The review was conducted according to the University of York’s Centre for Reviews and Dissemination guidelines. Studies were included if they concerned issues that influenced information transfer for patients in healthcare settings. Results. Forty-five research papers, four literature reviews and one policy statement were found to be relevant to parts of the topic, but not all of it. The main issues emerging concerned the impact of communication breakdown in some form, and included communication issues within trauma team processes, lack of structure and clarity during handovers including missing, irrelevant and inaccurate information, distractions and poorly documented care. Conclusion. Many factors influence information transfer but are poorly identified in relation to trauma care. The measurement of information transfer, which is integral to patient handover, has not been the focus of research to date. Nonetheless, documented patient information is considered evidence of care and a resource that affects continuing care.
Resumo:
Purpose: Communication is integral to effective trauma care provision. This presentation will report on barriers to meaningful information transfer for multi-trauma patients upon discharge from the Emergency Department (ED) to the care areas of Intensive Care Unit, High Dependency Unit, and Perioperative Services. This is an ongoing study at one tertiary level hospital in Queensland. Method: This is a multi-phase, mixed method study. In Phase 1 data were collected about information transfer. This Phase was initially informed by a comprehensive literature review, then via focus groups, chart audit, staff survey and review of national and international trauma forms. Results: The barriers identified related to nursing handover, documented information, time inefficiency, patient complexity and stability and time of transfer. Specifically this included differences in staff expectations and variation in the nursing handover processes, no agreed minimum dataset of information handed over, missing, illegible or difficult to find information in documentation (both medical and nursing), low compliance with some forms used for documentation. Handover of these patients is complex with information coming from many sources, dealing with issues is more difficult for these patients when transferred out of hours. Conclusions and further directions: This study investigated the current communication processes and standards of information transfer to identify barriers and issues. The barriers identified were the structure used for documentation, processes used (e.g. handover), patient acuity and time. This information is informing the development, implementation and evaluation of strategies to ameliorate the issues identified.
Resumo:
The realization of nonclassical states is an important task for many applications of quantum information processing. Usually, properly tailored interactions, different from goal to goal, are considered in order to accomplish specific tasks within the general framework of quantum state engineering. In this paper, we remark on the flexibility of a cross-Kerr nonlinear coupling in hybrid systems as an important ingredient in the engineering of nonclassical states. The general scenario we consider is the implementation of high cross-Kerr nonlinearity in cavity-quantum electrodynamics. In this context, we discuss the possibility of performing entanglement transfer and swapping between matter qubits and light fields initially prepared in separable coherent states. The recently introduced concept of entanglement reciprocation is also considered and shown to be possible with our scheme. We reinterpret some of our results in terms of applications of a generalized Ising interaction to systems of different nature.
Resumo:
We report the experimental demonstration of a one-way quantum protocol reliably operating in the presence of decoherence. Information is protected by designing an appropriate decoherence-free subspace for a cluster state resource. We demonstrate our scheme in an all-optical setup, encoding the information into the polarization states of four photons. A measurement-based one-way information-transfer protocol is performed with the photons exposed to severe symmetric phase-damping noise. Remarkable protection of information is accomplished, delivering nearly ideal outcomes.
Resumo:
We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d >= 2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d > 2 is found when Markovian-type decoherence models are present.
Resumo:
DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.
Resumo:
Effective healthcare integration is underpinned by clinical information transfer that is timely, legible and relevant. The aim of this study was to describe and evaluate a method for best practice information exchange. This was achieved based on the generic Mater integration methodology. Using this model the Mater Health Services have increased effective community fax discharge from 34% in 1999 to 86% in 2002. These results were predicated on applied information technology excellence involving the development of the Mater Electronic Health Referral Summary and effective change management methodology, which included addressing issues around patient consent, engaging clinicians, provision of timely and appropriate education and training, executive leadership and commitment and adequate resourcing. The challenge in achieving best practice information transfer is not solely in the technology but also in implementing the change process and engaging clinicians. General practitioners valued the intervention highly. Hospital and community providers now have an inexpensive, effective product for critical information exchange in a timely and relevant manner, enhancing the quality and safety of patient care.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.
Resumo:
Purpose: The purpose of this paper is to explain variations in discretionary information shared between buyers and key suppliers. The paper also aims to examine how the extent of information shared affects buyers’ performance in terms of resource usage, output, and flexibility. ----- ----- Design/methodology/approach: The data for the paper comprise 221 Finnish and Swedish non-service companies obtained through a mail survey. The hypothesized relationships were tested using partial least squares modelling with reflective and formative constructs.----- ----- Findings: The results of the study suggest that (environmental and demand) uncertainty and interdependency can to some degree explain the extent of information shared between a buyer and key supplier. Furthermore, information sharing improves buyers’ performance with respect to resource usage, output, and flexibility.----- ----- Research limitations/implications: A limitation to the paper relates to the data, which only included buyers.Abetter approach would have been to collect data from both, buyers and key suppliers. Practical implications – Companies face a wide range of supply chain solutions that enable and encourage collaboration across organizations. This paper suggests a more selective and balanced approach toward adopting the solutions offered as the benefits are contingent on a number of factors such as uncertainty. Also, the risks of information sharing are far too high for a one size fits all approach.----- ----- Originality/value: The paper illustrates the applicability of transaction cost theory to the contemporary era of e-commerce. With this finding, transaction cost economics can provide a valuable lens with which to view and interpret interorganizational information sharing, a topic that has received much attention in the recent years.
Resumo:
Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ``how much'' information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ``what'' is coded by primary afferents. Amongst the kinematic variables tested-position, velocity, and acceleration-primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
We use an information-theoretic method developed by Neifeld and Lee [J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km-long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz. We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps. Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.
Resumo:
A whole life-cycle information management vision is proposed, the organizational requirements for the realization of the scenario is investigated. Preliminary interviews with construction professionals are reported. Discontinuities at information transfer throughout life-cycle of built environments are resulting from lack of coordination and multiple data collection/storage practices. A more coherent history of these activities can improve the work practices of various teams by augmenting decision making processes and creating organizational learning opportunities. Therefore, there is a need for unifying these fragmented bits of data to create a meaningful, semantically rich and standardized information repository for built environment. The proposed vision utilizes embedded technologies and distributed building information models. Two diverse construction project types (large one-off design, small repetitive design) are investigated for the applicability of the vision. A functional prototype software/hardware system for demonstrating the practical use of this vision is developed and discussed. Plans for case-studies for validating the proposed model at a large PFI hospital and housing association projects are discussed.